

Further Kinematics - Edexcel Past Exam Questions

1. A particle *P* of mass 0.4 kg is moving under the action of a single force **F** newtons. At time t seconds, the velocity of P, \mathbf{v} m s⁻¹, is given by

$$\mathbf{v} = (6t + 4)\mathbf{i} + (t^2 + 3t)\mathbf{j}.$$

When t = 0, P is at the point with position vector $(-3\mathbf{i} + 4\mathbf{j})$ m. When t = 4, P is at the point S.

(a) Calculate the magnitude of **F** when t = 4.

(4)

(b) Calculate the distance OS.

(5)

Jan 05 Q4

2. A particle P moves in a horizontal plane. At time t seconds, the position vector of P is \mathbf{r} metres relative to a fixed origin O, and \mathbf{r} is given by

$$\mathbf{r} = (18t - 4t^3)\mathbf{i} + ct^2\mathbf{j},$$

where c is a positive constant. When t = 1.5, the speed of P is 15 m s⁻¹. Find

(a) the value of c,

(6)

(b) the acceleration of P when t = 1.5.

(3)

June 05 Q3

3. A particle P of mass 0.4 kg is moving so that its position vector \mathbf{r} metres at time t seconds is given by

$$\mathbf{r} = (t^2 + 4t)\mathbf{i} + (3t - t^3)\mathbf{j}.$$

(a) Calculate the speed of P when t = 3.

(5)

Jan 06 Q2 (edited)

4.	A particle P moves on the x-axis. At time t seconds, its acceleration is $(5-2t)$ m s ⁻² , measured
	in the direction of x increasing. When $t = 0$, its velocity is 6 m s ⁻¹ measured in the direction
	of x increasing. Find the time when P is instantaneously at rest in the subsequent motion.

(6)

June 06 Q1

- 5. A particle *P* of mass 0.5 kg is moving under the action of a single force **F** newtons. At time t seconds, $\mathbf{F} = (1.5t^2 3)\mathbf{i} + 2t\mathbf{j}$. When t = 2, the velocity of *P* is $(-4\mathbf{i} + 5\mathbf{j}) \,\mathrm{m\,s}^{-1}$.
 - (a) Find the acceleration of P at time t seconds.

(2)

(b) Show that, when t = 3, the velocity of P is $(9\mathbf{i} + 15\mathbf{j}) \,\mathrm{m \, s}^{-1}$.

(5)

Jan 07 Q6 (edited)

6. A particle P moves on the x-axis. At time t seconds the velocity of P is v m s⁻¹ in the direction of x increasing, where v is given by

$$v = \begin{cases} 8t - \frac{3}{2}t^2, & 0 \le t \le 4\\ 16 - 2t, & t > 4. \end{cases}$$

When t = 0, P is at the origin O.

Find

(a) the greatest speed of
$$P$$
 in the interval $0 \le t \le 4$, (4)

(b) the distance of
$$P$$
 from O when $t = 4$,

(c) the time at which
$$P$$
 is instantaneously at rest for $t > 4$, (1)

(d) the total distance travelled by
$$P$$
 in the first 10 s of its motion. (8)

June 07 Q8

7. At time t seconds ($t \ge 0$), a particle P has position vector \mathbf{p} metres, with respect to a fixed origin O, where

$$\mathbf{p} = (3t^2 - 6t + 4)\mathbf{i} + (3t^3 - 4t)\mathbf{j}.$$

Find

- (a) the velocity of P at time t seconds, (2)
- (b) the value of t when P is moving parallel to the vector \mathbf{i} . (3) Jan 08 Q2 (edited)
- **8.** A particle P of mass 0.5 kg is moving under the action of a single force \mathbf{F} newtons. At time t seconds,

$$\mathbf{F} = (6t - 5) \mathbf{i} + (t^2 - 2t) \mathbf{j}.$$

The velocity of P at time t seconds is \mathbf{v} m s⁻¹. When t = 0, $\mathbf{v} = \mathbf{i} - 4\mathbf{j}$.

(a) Find \mathbf{v} at time t seconds.

(6)

June 08 Q4 (edited)

9. A particle P moves along the x-axis in a straight line so that, at time t seconds, the velocity of P is $v \text{ m s}^{-1}$, where

$$v = \begin{cases} 10t - 2t^2, & 0 \le t \le 6, \\ \frac{-432}{t^2}, & t > 6. \end{cases}$$

At t = 0, P is at the origin O. Find the displacement of P from O when

$$(a) \quad t = 6,$$

(b)
$$t = 10$$
.

Jan 09 Q4

10. At time t = 0 a particle P leaves the origin O and moves along the x-axis. At time t seconds the velocity of P is $v \text{ m s}^{-1}$, where

$$v = 8t - t^2$$
.

- (a) Find the maximum value of v. (4)
- (b) Find the time taken for P to return to O. (5)

June 09 Q2

	en <i>P</i> is moving with minimum velocity.	(8)
		Jan 10 Q1
$\mathrm{m}\ \mathrm{s}^{-2}$	icle <i>P</i> moves on the <i>x</i> -axis. The acceleration of <i>P</i> at time <i>t</i> seconds, $t \ge 0$, in the positive <i>x</i> -direction. When $t = 0$, the velocity of <i>P</i> is 2 m s ⁻¹ in the positive <i>x</i> -direction. When $t = T$, the velocity of <i>P</i> is 6 m s ⁻¹ in the positive <i>x</i> -direction.	
Find t	the value of T .	(6)
		June 10 Q1
speed	rticle moves along the <i>x</i> -axis. At time $t = 0$ the particle passes through $t = 0$ the positive <i>x</i> -direction. The acceleration of the particle at time $t = 0$ the positive <i>x</i> -direction.	
Find		
(a) tl	ne velocity of the particle at time t seconds,	(3)
(<i>b</i>) tl	he displacement of the particle from the origin at time t seconds,	(2)
(c) tl	he values of t at which the particle is instantaneously at rest.	(3)
		Jan 11 Q3
	ticle <i>P</i> moves on the <i>x</i> -axis. The acceleration of <i>P</i> at time <i>t</i> seconds is $(t - ve x$ -direction. The velocity of <i>P</i> at time <i>t</i> seconds is $v m s^{-1}$. When $t = 0$,	
positi Find		
positi Find (a) v	ve x-direction. The velocity of P at time t seconds is $v \text{ m s}^{-1}$. When $t = 0$,	<i>v</i> = 6.
Find (a) v (b) the	ve x-direction. The velocity of P at time t seconds is $v \text{ m s}^{-1}$. When $t = 0$, in terms of t ,	v = 6. (4)