Integration by Substitution- Edexcel Past Exam Questions

1. Use the substitution $x=\sin \theta$ to find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{1}{2}} \frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}} \mathrm{~d} x \tag{7}
\end{equation*}
$$

June 05 Q4
2. Using the substitution $u^{2}=2 x-1$, or otherwise, find the exact value of

$$
\begin{equation*}
\int_{1}^{5} \frac{3 x}{\sqrt{ }(2 x-1)} \mathrm{d} x \tag{8}
\end{equation*}
$$

Jan 06 Q3
3.

$$
I=\int_{0}^{5} \mathrm{e}^{\sqrt{ }(3 x+1)} \mathrm{d} x
$$

Use the substitution $t=\sqrt{ }(3 x+1)$ to show that I may be expressed as $\int_{a}^{b} k t e^{t} \mathrm{~d} t$, giving the values of a, b and k.
4. Use the substitution $u=2^{x}$ to find the exact value of

$$
\begin{equation*}
\int_{0}^{1} \frac{2^{x}}{\left(2^{x}+1\right)^{2}} \mathrm{~d} x . \tag{6}
\end{equation*}
$$

June 07 Q2
5. Using the substitution $x=2 \cos u$, or otherwise, find the exact value of

$$
\begin{equation*}
\int_{1}^{\sqrt{2}} \frac{1}{x^{2} \sqrt{ }\left(4-x^{2}\right)} \mathrm{d} x \tag{7}
\end{equation*}
$$

Jan 10 Q8(edited)
6. Using the substitution $u=\cos x+1$, or otherwise, show that

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \mathrm{e}^{\cos x+1} \sin x \mathrm{~d} x=\mathrm{e}(\mathrm{e}-1) \tag{6}
\end{equation*}
$$

June 10 Q2
7.

$$
I=\int_{2}^{5} \frac{1}{4+\sqrt{ }(x-1)} \mathrm{d} x
$$

Using the substitution $x=(u-4)^{2}+1$, or otherwise, and integrating, find the exact value of I.
8.

Figure 2

Figure 2 shows a sketch of the curve with equation $y=x^{3} \ln \left(x^{2}+2\right), x \geq 0$.
The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis and the line $x=\sqrt{ } 2$.
(a) Use the substitution $u=x^{2}+2$ to show that the area of R is

$$
\begin{equation*}
\frac{1}{2} \int_{2}^{4}(u-2) \ln u \mathrm{~d} u \tag{4}
\end{equation*}
$$

(b) Hence, or otherwise, find the exact area of R.

