C3 PROOF

Answers - Worksheet A

1 **a** e.g. a = -2, b = 1 \Rightarrow $a^2 - b^2 = 4 - 1 = 3$ \Rightarrow $a^2 - b^2 > 0$ and a - b = -2 - 1 = -3 \Rightarrow a - b < 0

[any negative value of a such that |a| > |b|]

- **b** 7 7 is prime and divisible by 7 [no other examples]
- **c** e.g. $x = \sqrt{2}$, $y = 2\sqrt{2}$ \Rightarrow x and y irrational and xy = 4 which is rational [many other examples]
- **d** e.g. x = -90 \Rightarrow $\cos (90 |x|)^\circ = \cos 0 = 1$ and $\sin x^\circ = \sin (-90^\circ) = -1$ [any -ve x except multiples of 180]
- a true any number divisible by 6 is also divisible by 2 and ∴ not prime
 - **b** n 1 2 3 4 5 $3^n + 2$ 5 11 29 83 245

false e.g. n = 5 \Rightarrow $3^n + 2 = 245$ which is divisible by 5 and \therefore not prime [many other examples]

- **c** false e.g. n=4 \Rightarrow $\sqrt{n}=2$ which is rational [many other examples]
- **d** true b divisible by $c \Rightarrow b = kc, \ k \in \mathbb{Z}$ a divisible by $b \Rightarrow a = lb, \ l \in \mathbb{Z} \Rightarrow a = klc : a$ is divisible by c
- **3** a assume n^3 odd and n even, where $n \in \mathbb{Z}^+$

n even \Rightarrow $n = 2m, m \in \mathbb{Z}$ \Rightarrow $n^3 = (2m)^3 = 8m^3 = 2(4m^3)$ $4m^3 \in \mathbb{Z} : n^3 \text{ even}$ \Rightarrow contradiction : n odd

b assume *x* irrational and \sqrt{x} rational

$$\sqrt{x}$$
 rational $\Rightarrow \sqrt{x} = \frac{p}{q}, \ p, q \in \mathbb{Z}$
 $\Rightarrow x = \frac{p^2}{q^2}, \ p^2, q^2 \in \mathbb{Z} \therefore x \text{ rational}$
 $\Rightarrow \text{ contradiction } \therefore \sqrt{x} \text{ irrational}$

c assume bc not divisible by a and b divisible by a where $a, b, c \in \mathbb{Z}$

b divisible by $a \Rightarrow b = ka, k \in \mathbb{Z}$

 $\Rightarrow bc = kac \text{ which is divisible by } a$

 \Rightarrow contradiction : b is not divisible by a

d assume $n^2 - 4n$ odd and n even, where $n \in \mathbb{Z}^+$

n even \Rightarrow $n = 2m, m \in \mathbb{Z}$ \Rightarrow $n^2 - 4n = (2m)^2 - 4(2m) = 4m^2 - 8m = 2(2m^2 - 4m)$ $2m^2 - 4m \in \mathbb{Z}$ $\therefore n^2 - 4n \text{ even}$ \Rightarrow contradiction $\therefore n \text{ odd}$

e assume $m^2 - n^2 = 6$, where $m, n \in \mathbb{Z}^+$

 $m^2 - n^2 = 6 \qquad \Rightarrow \qquad (m+n)(m-n) = 6$

 $m, n \in \mathbb{Z}^+$ \Rightarrow $(m+n), (m-n) \in \mathbb{Z}, (m+n) > (m-n) \text{ and } (m+n) > 0$

 $\therefore m+n=6 \text{ and } m-n=1 \text{ or } m+n=3 \text{ and } m-n=2$

adding $\Rightarrow 2m = 7$ or 2m = 5

 \Rightarrow $m = \frac{7}{2}$ or $m = \frac{5}{2}$ \Rightarrow m not an integer

⇒ contradiction ∴ no positive integer solutions

C3 PROOF

4 a assume $x^2 + y^2$ divisible by 4 and x, y odd integers

$$x, y \text{ odd}$$
 \Rightarrow $x = 2m + 1, m \in \mathbb{Z} \text{ and } y = 2n + 1, n \in \mathbb{Z}$
 \Rightarrow $x^2 + y^2 = (2m + 1)^2 + (2n + 1)^2$
 $= 4m^2 + 4m + 1 + 4n^2 + 4n + 1$
 $= 4(m^2 + m + n^2 + n) + 2$
 $m^2 + m + n^2 + n \in \mathbb{Z}$ $\therefore x^2 + y^2 \text{ not divisible by 4}$
 \Rightarrow contradiction $\therefore x \text{ and } y \text{ not both odd}$

b assume $x^2 + y^2$ divisible by 4, x odd integer and y even integer

$$x ext{ odd, } y ext{ even}$$
 \Rightarrow $x = 2m + 1, m \in \mathbb{Z} ext{ and } y = 2n, n \in \mathbb{Z}$
 \Rightarrow $x^2 + y^2 = (2m + 1)^2 + (2n)^2$
 $= 4m^2 + 4m + 1 + 4n^2$
 $= 4(m^2 + m + n^2) + 1$
 $= 4m^2 + m + n^2 \in \mathbb{Z} ext{ } \therefore x^2 + y^2 ext{ not divisible by 4}$
 $\Rightarrow \text{ contradiction } \therefore x \text{ odd and } y \text{ even not possible}$

same argument applies with x even and y odd part a shows x and y can't both be odd

 \therefore x and y both even

- 5 **a** false e.g. a = 2, b = 4 $\Rightarrow \log_a b = 2$ which is rational [many other examples]
 - **b** true (2n+1) and (2n+3), $n \in \mathbb{Z}$ represent any two consecutive odd integers $(2n+3)^2 (2n+1)^2 = 4n^2 + 12n + 9 (4n^2 + 4n + 1)$ = 8n + 8= 8(n+1)

 $n+1 \in \mathbb{Z}$: difference is divisible by 8

- c false e.g. $n = 13 \implies n^2 + 3n + 13 = 13(13 + 3 + 1)$ which is divisible by 13 [many other examples]
- **d** true $x^2 2y(x y) = x^2 2xy + 2y^2$ = $x^2 - 2xy + y^2 + y^2$ = $(x - y)^2 + y^2$ for real x and y, $(x - y)^2 \ge 0$ and $y^2 \ge 0$ $\therefore x^2 - 2y(x - y) \ge 0$

6 **a**
$$\sqrt{2} = \frac{p}{q}$$
, $p, q \in \mathbb{Z}$ \Rightarrow $2 = \frac{p^2}{q^2}$ \Rightarrow $p^2 = 2q^2$ \Rightarrow $p^2 \text{ even } \Rightarrow$ $p \text{ even}$

b assume $\sqrt{2}$ rational \Rightarrow $\sqrt{2} = \frac{p}{q}$, $p, q \in \mathbb{Z}$ and p, q co-prime

part
$$\mathbf{a}$$
 \Rightarrow p even \Rightarrow $p = 2n, n \in \mathbb{Z}$
 \Rightarrow $(2n)^2 = 2q^2$
 \Rightarrow $q^2 = 2n^2$
 \Rightarrow q^2 even \Rightarrow q even
 \Rightarrow p and q both even \therefore not co-prime
 \Rightarrow contradiction $\therefore \sqrt{2}$ is irrational

C3 PROOF

Answers - Worksheet B

- 1 **a** e.g. $x = \frac{1}{8}$ \Rightarrow $\sqrt[3]{x} = \frac{1}{2}, \frac{1}{2} > \frac{1}{8}$ [any value of x in the interval 0 < x < 1]
 - **b** e.g. n = 7 \Rightarrow $n^3 n + 7 = 7(49 1 + 1)$ which is divisible by 7 [many other examples]
- 2 assume $\sqrt{\pi}$ is rational $\Rightarrow \sqrt{\pi} = \frac{p}{q}, \ p, q \in \mathbb{Z}$ $\Rightarrow \pi = \frac{p^2}{q^2}, \ p^2, q^2 \in \mathbb{Z} \therefore \pi \text{ rational}$ $\Rightarrow \text{contradiction } \therefore \sqrt{\pi} \text{ irrational}$
- 3 consider $15x^2 11x + 2 < 0$ $\Rightarrow (5x - 2)(3x - 1) < 0$ $\Rightarrow \frac{1}{3} < x < \frac{2}{5}$ e.g. $x = 0.35 \Rightarrow 15x^2 - 11x + 2 = -0.0125$, -0.0125 < 0[any value of x in the interval $\frac{1}{3} < x < \frac{2}{5}$]
- 4 a $n^2 + 2n = (2m+1)^2 + 2(2m+1)$ = $4m^2 + 4m + 1 + 4m + 2$ = $4m^2 + 8m + 3$
 - **b** assume $n^2 + 2n$ even and n odd, where $n \in \mathbb{Z}$ n odd $\Rightarrow n = 2m + 1, m \in \mathbb{Z}$ $\Rightarrow n^2 + 2n = 4m^2 + 8m + 3 = 2(2m^2 + 4m + 1) + 1$ $2m^2 + 4m + 1 \in \mathbb{Z} : n^2 + 2n$ odd \Rightarrow contradiction $\therefore n$ even
- 5 **a** $k \cos x \csc x = 0 \Rightarrow k \cos x = \frac{1}{\sin x}$ $\Rightarrow k \sin x \cos x = 1$ $\Rightarrow \frac{1}{2}k \sin 2x = 1$ $\Rightarrow \sin 2x = \frac{2}{k}$ $|\sin 2x| \le 1 \Rightarrow |\frac{2}{k}| \le 1$ $\Rightarrow |k| \ge 2$ **b** $3 \cos x - \csc x = 0 \Rightarrow \sin 2x = \frac{2}{3}$ 2x = 41.810, 180 - 41.810, 360 + 41.810, 540 - 41.810 2x = 41.810, 138.190, 401.810, 498.190x = 20.9, 69.1, 200.9, 249.1 (1dp)

assume
$$x^2 - y^2 = 1$$
, where $x, y \in \mathbb{Z}^+$
 $x^2 - y^2 = 1$ \Rightarrow $(x + y)(x - y) = 1$
 $x, y \in \mathbb{Z}^+$ \Rightarrow $(x + y), (x - y) \in \mathbb{Z}$ and $(x + y) > 0$
 \therefore $x + y = 1$ and $x - y = 1$
adding \Rightarrow $2x = 2$
 \Rightarrow $x = 1$
 \Rightarrow $y = 0$
 \Rightarrow contradiction \therefore no positive integer solutions

- 7 **a** false e.g. $a = \sqrt{2}$, $b = 1 \sqrt{2}$ \Rightarrow a and b irrational and a + b = 1 which is rational [many other examples]
 - **b** true m, n consecutive odd integers $\Rightarrow m = 2a + 1, n = 2a + 3, a \in \mathbb{Z}$ $\Rightarrow m + n = 2a + 1 + 2a + 3 = 4a + 4 = 4(a + 1)$ $a + 1 \in \mathbb{Z}$ $\therefore m + n$ divisible by 4
 - c false e.g. $x = \frac{5\pi}{3}$ \Rightarrow $\cos x = \frac{1}{2}$ and $1 + \sin x = 1 \frac{\sqrt{3}}{2}$, $\frac{1}{2} > 1 \frac{\sqrt{3}}{2}$ [any value of x of the form $2n\pi + y$, $n \in \mathbb{Z}$, $-\frac{\pi}{2} < y < 0$]

8 **a**
$$\log_2 3 = \frac{p}{q}$$
 \Rightarrow $2^{\frac{p}{q}} = 3$ \Rightarrow $(2^{\frac{p}{q}})^q = 3^q$ \Rightarrow $2^p = 3^q$

b assume $\log_2 3$ is rational $\Rightarrow \log_2 3 = \frac{p}{q}, \ p, q \in \mathbb{Z}, \ q \neq 0$ $\Rightarrow 2^p = 3^q$

2 and 3 are co-prime $\Rightarrow p = q = 0$

⇒ p = q = 0⇒ contradiction : $\log_2 3$ is irrational

c e.g. $a = 2, b = \sqrt{2}$ \Rightarrow a rational and b irrational and $\log_a b = \frac{1}{2}$ which is rational

[many other examples]

9 **a**
$$y = \frac{x-2}{4x}$$
 swap $x = \frac{y-2}{4y}$
 $4xy = y-2$
 $y(4x-1) = -2$
 $y = \frac{2}{1-4x}$
 $f^{-1}(x) = \frac{2}{1-4x}, x \in \mathbb{R}, x \neq \frac{1}{4}$

b
$$f(x) = f^{-1}(x) \Rightarrow \frac{x-2}{4x} = \frac{2}{1-4x}$$
$$\Rightarrow (x-2)(1-4x) = 8x$$
$$\Rightarrow 4x^2 - x + 2 = 0$$
$$b^2 - 4ac = 1 - 32 = -31$$
$$b^2 - 4ac < 0 \Rightarrow \text{no real roots}$$

 \therefore no real values of x for which $f(x) = f^{-1}(x)$