Algebraic Division 2 - Edexcel Past Exam Questions MARK SCHEME

Question 1

Question Number	Scheme	Marks
1	$3x^2-2x+7$	
	$x^{2}(+0x)-4$ $3x^{4}-2x^{3}-5x^{2}+(0x)-4$	
By Division	$3x^4 + 0x^3 - 12x^2$	
	$-2x^3+7x^2+0x$	
	$-2x^3 + 0x^2 + 8x$	
	$7x^2 - 8x - 4$	
	$7x^2 + 0x - 28$	
	-8x + 24	
	a = 3	B1
	$3x^2 - 2x$	ы
	$x^{2}(+0x)-4)3x^{4}-2x^{3}-5x^{2}+(0x)-4$	
	Long division as far as $3x^4 + 0x^3 - 12x^2$	M1
	$-2x^3 + \dots$	
	$-2x^3 + \dots$	
	Two of $b = -2$ $c = 7$ $d = -8$ $e = 24$	A1
	All four of $b=-2$ $c=7$ $d=-8$ $e=24$	A1
		(4 marks)

Notes for Question 1

- B1 Stating a = 3. This can also be scored by the coefficient of x^2 in $3x^2 2x + 7$
- Using long division by $x^2 4$ and getting as far as the 'x' term. The coefficients need not be correct.

Award if you see the whole number part as $...x^2 + ...x$ following some working. You may also see this in a table/grid.

Long division by (x+2) will not score anything until (x-2) has been divided into the new quotient. It is very unlikely to score full marks and the mark scheme can be applied.

- A1 Achieving two of b = -2 c = 7 d = -8 e = 24.
 - The answers may be embedded within the division sum and can be implied.
- A1 Achieving all of b=-2 c=7 d=-8 and e=24

Accept a correct long division for 3 out of the 4 marks scoring B1M1A1A0

Need to see a=..., b=..., or the values embedded in the rhs for all 4 marks

Question Number	Scheme	Marks
Alt 1		
By Multiplicat ion	* $3x^4 - 2x^3 - 5x^2 - 4 \equiv (ax^2 + bx + c)(x^2 - 4) + dx + e$	
	Compares the x^4 terms $a=3$	B1
	Compares coefficients to obtain a numerical value of one further constant $-2 = b$, $-5 = -4a + c \Rightarrow c =$	M1
	Two of $b = -2$ $c = 7$ $d = -8$ $e = 24$ All four of $b = -2$ $c = 7$ $d = -8$ $e = 24$	A1 A1
	All foul of $v=-2$ $c=1$ $u=-6$ $e=24$	AI
	Notes for Operation 2	(4 marks)

Notes for Question 2

- B1 Stating a = 3. This can also be scored for writing $3x^4 = ax^4$
- Multiply out expression given to get *. Condone slips only on signs of either expression. Then compare the coefficient of any term (other than x^4) to obtain a numerical value of one further constant. In reality this means a valid attempt at either b or c

The method may be implied by a correct additional constant to a.

- A1 Achieving two of b=-2 c=7 d=-8 e=24
- A1 Achieving all of b=-2 c=7 d=-8 and e=24

Question 2

Question	Scheme	Marks
	$x^2 + x - 6) x^4 + x^3 - 3x^2 + 7x - 6$	
	$\underline{x^4 + x^3 - 6x^2}$	
	$3x^2 + 7x - 6$	M1 A1
	$3x^2 + 3x - 18$	
	4x+12	
	4 3 2 2 7 6	
	$\frac{x^4 + x^3 - 3x^2 + 7x - 6}{x^2 + x - 6} \equiv x^2 + 3 + \frac{4(x+3)}{(x+3)(x-2)}$	M1
	$\equiv x^2 + 3 + \frac{4}{(x-2)}$	A1
		(4)