Radians: Arc Length and Areas of Sectors 2 - Edexcel Past Exam Questions

1.

Figure 2
Figure 2 shows $A B C$, a sector of a circle of radius 6 cm with centre A. Given that the size of angle $B A C$ is 0.95 radians, find
(a) the length of the arc $B C$,
(b) the area of the sector $A B C$.

The point D lies on the line $A C$ and is such that $A D=B D$. The region R, shown shaded in Figure 2, is bounded by the lines $C D, D B$ and the arc $B C$.
(c) Show that the length of $A D$ is 5.16 cm to 3 significant figures.

Find
(d) the perimeter of R,
(e) the area of R, giving your answer to 2 significant figures.
2.

Figure 2
The triangle $X Y Z$ in Figure 1 has $X Y=6 \mathrm{~cm}, Y Z=9 \mathrm{~cm}, Z X=4 \mathrm{~cm}$ and angle $Z X Y=\alpha$.
The point W lies on the line $X Y$.
The circular arc $Z W$, in Figure 1 is a major arc of the circle with centre X and radius 4 cm .
(a) Show that, to 3 significant figures, $\alpha=2.22$ radians.
(b) Find the area, in cm^{2}, of the major sector $X Z W X$.

The region enclosed by the major arc $Z W$ of the circle and the lines $W Y$ and $Y Z$ is shown shaded in Figure 1.

Calculate
(c) the area of this shaded region,
(d) the perimeter $Z W Y Z$ of this shaded region.
3.

Figure 2
Figure 2 shows a plan view of a garden.
The plan of the garden $A B C D E A$ consists of a triangle $A B E$ joined to a sector $B C D E$ of a circle with radius 12 m and centre B.

The points A, B and C lie on a straight line with $A B=23 \mathrm{~m}$ and $B C=12 \mathrm{~m}$.

Given that the size of angle $A B E$ is exactly 0.64 radians, find
(a) the area of the garden, giving your answer in m^{2}, to 1 decimal place,
(b) the perimeter of the garden, giving your answer in metres, to 1 decimal place.
4.

Figure 2
Figure 2 shows the design for a triangular garden $A B C$ where $A B=7 \mathrm{~m}, A C=13 \mathrm{~m}$ and $B C=10 \mathrm{~m}$.

Given that angle $B A C=\theta$ radians,
(a) show that, to 3 decimal places, $\theta=0.865$

The point D lies on $A C$ such that $B D$ is an arc of the circle centre A, radius 7 m .
The shaded region S is bounded by the arc $B D$ and the lines $B C$ and $D C$. The shaded region S will be sown with grass seed, to make a lawned area.

Given that 50 g of grass seed are needed for each square metre of lawn,
(b) find the amount of grass seed needed, giving your answer to the nearest 10 g .
5.

Figure 2
The shape $A B C D E A$, as shown in Figure 2, consists of a right-angled triangle $E A B$ and a triangle $D B C$ joined to a sector $B D E$ of a circle with radius 5 cm and centre B.

The points A, B and C lie on a straight line with $B C=7.5 \mathrm{~cm}$.

Angle $E A B=\frac{\pi}{2}$ radians, angle $E B D=1.4$ radians and $C D=6.1 \mathrm{~cm}$.
(a) Find, in cm^{2}, the area of the sector $B D E$.
(b) Find the size of the angle $D B C$, giving your answer in radians to 3 decimal places.
(c) Find, in cm^{2}, the area of the shape $A B C D E A$, giving your answer to 3 significant figures.
6.

Figure 2
Figure 2 shows the shape $A B C D E A$ which consists of a right-angled triangle $B C D$ joined to a sector $A B D E A$ of a circle with radius 7 cm and centre B.
A, B and C lie on a straight line with $A B=7 \mathrm{~cm}$.
Given that the size of angle $A B D$ is exactly 2.1 radians,
(a) find, in cm , the length of the arc $D E A$,
(b) find, in cm, the perimeter of the shape $A B C D E A$, giving your answer to 1 decimal place.
7.

Figure 1
Figure 1 shows a sketch of a design for a scraper blade. The blade $A O B C D A$ consists of an isosceles triangle $C O D$ joined along its equal sides to sectors $O B C$ and $O D A$ of a circle with centre O and radius 8 cm . Angles $A O D$ and $B O C$ are equal. $A O B$ is a straight line and is parallel to the line $D C . D C$ has length 7 cm .
(a) Show that the angle $C O D$ is 0.906 radians, correct to 3 significant figures.
(b) Find the perimeter of $A O B C D A$, giving your answer to 3 significant figures.
(c) Find the area of $A O B C D A$, giving your answer to 3 significant figures.
8.

Figure 1
Figure 1 is a sketch representing the cross-section of a large tent $A B C D E F$. $A B$ and $D E$ are line segments of equal length.

Angle $F A B$ and angle $D E F$ are equal.
F is the midpoint of the straight line $A E$ and $F C$ is perpendicular to $A E$.
$B C D$ is an arc of a circle of radius 3.5 m with centre at F.
It is given that

$$
\begin{array}{r}
A F=F E=3.7 \mathrm{~m} \\
B F=F D=3.5 \mathrm{~m} \\
\text { angle } B F D=1.77 \text { radians }
\end{array}
$$

Find
(a) the length of the arc $B C D$ in metres to 2 decimal places,
(b) the area of the sector $F B C D$ in m^{2} to 2 decimal places,
(c) the total area of the cross-section of the tent in m^{2} to 2 decimal places.

