Area under Parametric Curves 2 - Edexcel Past Exam Questions

1.

Figure 2
Figure 2 shows a sketch of part of the curve C with parametric equations

$$
x=1-\frac{1}{2} t, \quad y=2^{t}-1 .
$$

The curve crosses the y-axis at the point A and crosses the x-axis at the point B.
(a) Show that A has coordinates $(0,3)$.
(b) Find the x-coordinate of the point B.
(c) Find an equation of the normal to C at the point A.

The region R, as shown shaded in Figure 2, is bounded by the curve C, the line $x=-1$ and the x-axis.
(d) Use integration to find the exact area of R.
2.

Figure 4
Figure 4 shows a sketch of part of the curve C with parametric equations

$$
x=3 \theta \sin \theta, \quad y=\sec ^{3} \theta, \quad 0 \leqslant \theta<\frac{\pi}{2}
$$

The point $P(k, 8)$ lies on C, where k is a constant.
(a) Find the exact value of k.

The finite region R, shown shaded in Figure 4, is bounded by the curve C, the y-axis, the x-axis and the line with equation $x=k$.
(b) Show that the area of R can be expressed in the form

$$
\lambda \int_{\alpha}^{\beta}\left(\theta \sec ^{2} \theta+\tan \theta \sec ^{2} \theta\right) \mathrm{d} \theta
$$

where λ, α and β are constants to be determined.
(c) Hence use integration to find the exact value of the area of R.

