## Binomial Expansion 2 (Year 13) - Edexcel Past Exam Questions

1. (a) Expand

$$
\frac{1}{(2-5 x)^{2}}, \quad|x|<\frac{2}{5},
$$

in ascending powers of $x$, up to and including the term in $x^{2}$, giving each term as a simplified fraction.

Given that the binomial expansion of $\frac{2+k x}{(2-5 x)^{2}},|x|<\frac{2}{5}$, is

$$
\frac{1}{2}+\frac{7}{4} x+A x^{2}+\ldots
$$

(b) find the value of the constant $k$,
(c) find the value of the constant $A$.
2.

$$
\mathrm{f}(x)=\frac{6}{\sqrt{ }(9-4 x)}, \quad|x|<\frac{9}{4} .
$$

(a) Find the binomial expansion of $\mathrm{f}(x)$ in ascending powers of $x$, up to and including the term in $x^{3}$. Give each coefficient in its simplest form.

Use your answer to part (a) to find the binomial expansion in ascending powers of $x$, up to and including the term in $x^{3}$, of
(b) $\mathrm{g}(x)=\frac{6}{\sqrt{ }(9+4 x)}, \quad|x|<\frac{9}{4}$,
(c) $\mathrm{h}(x)=\frac{6}{\sqrt{ }(9-8 x)}, \quad|x|<\frac{9}{8}$.

June 12 Q3
3. Given

$$
\mathrm{f}(x)=(2+3 x)^{-3}, \quad|x|<\frac{2}{3},
$$

find the binomial expansion of $\mathrm{f}(x)$, in ascending powers of $x$, up to and including the term in $x^{3}$.

Give each coefficient as a simplified fraction.
4. (a) Use the binomial expansion to show that

$$
\begin{equation*}
\sqrt{\left(\frac{1+x}{1-x}\right)} \approx 1+x+\frac{1}{2} x^{2}, \quad|x|<1 \tag{6}
\end{equation*}
$$

(b) Substitute $x=\frac{1}{26}$ into

$$
\sqrt{\left(\frac{1+x}{1-x}\right)}=1+x+\frac{1}{2} x^{2}
$$

to obtain an approximation to $\sqrt{ } 3$.
Give your answer in the form $\frac{a}{b}$ where $a$ and $b$ are integers.
June 13 Q2
5. (a) Find the binomial expansion of

$$
\sqrt[3]{(8-9 x)}, \quad|x|<\frac{8}{9}
$$

in ascending powers of $x$, up to and including the term in $x^{3}$. Give each coefficient as a simplified fraction.
(b) Use your expansion to estimate an approximate value for $\sqrt[3]{7100}$, giving your answer to 4 decimal places. State the value of $x$, which you use in your expansion, and show all your working.
6. Given that the binomial expansion of $(1+k x)^{-4},|k x|<1$, is

$$
1-6 x+A x^{2}+\ldots
$$

(a) find the value of the constant $k$,
(b) find the value of the constant $A$, giving your answer in its simplest form.
7. (a) Find the binomial expansion of

$$
\frac{1}{\sqrt{ }(9-10 x)}, \quad|x|<\frac{9}{10}
$$

in ascending powers of $x$ up to and including the term in $x^{2}$.
Give each coefficient as a simplified fraction.
(b) Hence, or otherwise, find the expansion of

$$
\frac{3+x}{\sqrt{ }(9-10 x)}, \quad|x|<\frac{9}{10}
$$

in ascending powers of $x$, up to and including the term in $x^{2}$.
Give each coefficient as a simplified fraction.
8. (a) Find the binomial expansion of

$$
(4+5 x)^{\frac{1}{2}}, \quad|x|<\frac{4}{5}
$$

in ascending powers of $x$, up to and including the term in $x^{2}$.
Give each coefficient in its simplest form.
(b) Find the exact value of $(4+5 x)^{\frac{1}{2}}$ when $x=\frac{1}{10}$.

Give your answer in the form $k \sqrt{ }$, where $k$ is a constant to be determined.
(c) Substitute $x=\frac{1}{10}$ into your binomial expansion from part (a) and hence find an approximate value for $\sqrt{ } 2$.

Give your answer in the form $\frac{p}{q}$, where $p$ and $q$ are integers.
June 15 Q1
9. Use the binomial series to find the expansion of

$$
\frac{1}{(2+5 x)^{3}}, \quad|x|<\frac{2}{5},
$$

in ascending powers of $x$, up to and including the term in $x^{3}$.
Give each coefficient as a fraction in its simplest form.
10.

$$
\mathrm{f}(x)=(2+k x)^{-3}, \quad|k x|<2, \text { where } k \text { is a positive constant }
$$

The binomial expansion of $\mathrm{f}(x)$, in ascending powers of $x$, up to and including the term in $x^{2}$ is

$$
A+B x+\frac{243}{16} x^{2}
$$

where $A$ and $B$ are constants.
(a) Write down the value of $A$.
(b) Find the value of $k$.
(c) Find the value of $B$.

