Differentiation: Connected Rates of Change 2 - Edexcel Past Exam Questions

1.

Figure 1
Figure 1 shows a metal cube which is expanding uniformly as it is heated.
At time t seconds, the length of each edge of the cube is $x \mathrm{~cm}$, and the volume of the cube is $V \mathrm{~cm}^{3}$.
(a) Show that $\frac{\mathrm{d} V}{\mathrm{~d} x}=3 x^{2}$.

Given that the volume, $V \mathrm{~cm}^{3}$, increases at a constant rate of $0.048 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$,
(b) find $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when $x=8$,
(c) find the rate of increase of the total surface area of the cube, in $\mathrm{cm}^{2} \mathrm{~s}^{-1}$, when $x=8$.
2.

Figure 2
A vase with a circular cross-section is shown in Figure 2. Water is flowing into the vase.
When the depth of the water is $h \mathrm{~cm}$, the volume of water $V \mathrm{~cm}^{3}$ is given by

$$
V=4 \pi h(h+4), \quad 0 \leq h \leq 25
$$

Water flows into the vase at a constant rate of $80 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
Find the rate of change of the depth of the water, in $\mathrm{cm} \mathrm{s}^{-1}$, when $h=6$.
3. At time t seconds the radius of a sphere is $r \mathrm{~cm}$, its volume is $V \mathrm{~cm}^{3}$ and its surface area is $S \mathrm{~cm}^{2}$.
[You are given that $V=\frac{4}{3} \pi r^{3}$ and that $S=4 \pi r^{2}$]
The volume of the sphere is increasing uniformly at a constant rate of $3 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
(a) Find $\frac{\mathrm{d} r}{\mathrm{~d} t}$ when the radius of the sphere is 4 cm , giving your answer to 3 significant figures.
(b) Find the rate at which the surface area of the sphere is increasing when the radius is 4 cm .

