

Functions 2 - Edexcel Past Exam Questions

1. The function f is defined by

f:
$$x \mapsto \frac{3(x+1)}{2x^2+7x-4} - \frac{1}{x+4}, \quad x \in \mathbb{R}, \ x > \frac{1}{2}.$$

(a) Show that
$$f(x) = \frac{1}{2x - 1}$$
. (4)

- (b) Find $f^{-1}(x)$. (3)
- (c) Find the domain of f^{-1} . (1)

$$g(x) = \ln (x+1)$$

(d) Find the solution of
$$fg(x) = \frac{1}{7}$$
, giving your answer in terms of e. (4)
Jan 12 Q7

2. The functions f and g are defined by

f:
$$x \mapsto e^x + 2$$
, $x \in \mathbb{R}$
g: $x \mapsto \ln x$, $x > 0$.

(<i>a</i>) State the range of f.	(1)
(b) Find $fg(x)$, giving your answer in its simplest form.	(2)

- (c) Find the exact value of x for which f(2x + 3) = 6. (4)
- (d) Find f^{-1} , the inverse function of f, stating its domain. (3)
- (e) On the same axes sketch the curves with equation y = f(x) and y = f⁻¹(x), giving the coordinates of all the points where the curves cross the axes.
 (4) June 12 Q6

3. The function f has domain $-2 \le x \le 6$ and is linear from (-2, 10) to (2, 0) and from (2, 0) to (6, 4). A sketch of the graph of y = f(x) is shown in Figure 1.

Figure 1

(*a*) Write down the range of f.

(b) Find ff(0).

The function g is defined by

 $g: x \to \frac{4+3x}{5-x}, \qquad x \in \mathbb{R}, \qquad x \neq 5.$

(c) Find $g^{-1}(x)$.

(*d*) Solve the equation gf(x) = 16.

(5) June 13 Q7

(3)

(1)

(2)

4. The functions f and g are defined by

		$f: x \mapsto 2 x +3,$	$x \in R$	
		g: $x \mapsto 3-4x$,	$x \in R$	
(<i>a</i>)	State the range of f.			(2)
(<i>b</i>)	Find fg(1).			(2)
(<i>c</i>)	Find g^{-1} , the inverse fun	ction of g.		(2)

(*d*) Solve the equation

$$gg(x) + [g(x)]^2 = 0$$
 (5)
June 13(R) Q4

Figure 1 shows part of the graph with equation $y = f(x), x \in \mathbb{R}$.

The graph consists of two line segments that meet at the point Q(6, -1).

The graph crosses the y-axis at the point P(0, 11).

Sketch, on separate diagrams, the graphs of

(a)
$$y = |f(x)|$$
 (2)

(b)
$$y = 2f(-x) + 3$$
 (3)

On each diagram, show the coordinates of the points corresponding to P and Q.

Given that f (x) = a | x - b | - 1, where *a* and *b* are constants,

(c) state the value of a and the value of b. (2) June 14 Q4

6.

	$g(x) = \frac{x}{x+3} + \frac{3(2x+1)}{x^2 + x - 6},$	<i>x</i> > 3
(<i>a</i>)	Show that $g(x) = \frac{x+1}{x-2}, x > 3$	(4)
(<i>b</i>)	Find the range of g.	(2)
(<i>c</i>)	Find the exact value of <i>a</i> for which $g(a) = g^{-1}(a)$.	(4) June 14 Q5

7. (*a*) Sketch the graph with equation

y = |4x - 3|

stating the coordinates of any points where the graph cuts or meets the axes.	(2)
Find the complete set of values of <i>x</i> for which	

(b)
$$|4x-3| > 2-2x$$
 (4)

(c)
$$|4x-3| > \frac{3}{2} - 2x$$
 (2)
June 14(R) Q5

f:
$$x \to e^{2x} + k^2$$
, $x \in \mathbb{R}$, k is a positive constant.

(b) Find f^{-1} and state its domain. (3)

The function g is defined by

$$g: x \to \ln(2x), \qquad x > 0$$

(c) Solve the equation

$$g(x) + g(x^2) + g(x^3) = 6$$

giving your answer in its simplest form.

- (d) Find fg(x), giving your answer in its simplest form. (2)
- (e) Find, in terms of the constant k, the solution of the equation

$$fg(x) = 2k^2 \tag{2}$$

(4)

9. The functions f and g are defined by

f:
$$x \to 7x - 1$$
, $x \in \mathbb{R}$,
g: $x \to \frac{4}{x - 2}$, $x \neq 2, x \in \mathbb{R}$,

(a) Solve the equation
$$fg(x) = x$$
. (4)

(b) Hence, or otherwise, find the largest value of a such that $g(a) = f^{-1}(a)$. (1)

Figure 1 shows a sketch of part of the graph of y = g(x), where

$$g(x) = 3 + \sqrt{x+2}, \qquad x \ge -2$$

(a) State the range of g.(1)(b) Find $g^{-1}(x)$ and state its domain.(3)(c) Find the exact value of x for whichg(x) = x(d) Hence state the value of a for which(4)

$$g(a) = g^{-1}(a)$$
 (1)

- **11.** Given that *a* and *b* are positive constants,
 - (a) on separate diagrams, sketch the graph with equation
 - (i) y = |2x a|
 - (ii) y = |2x a| + b

Show, on each sketch, the coordinates of each point at which the graph crosses or meets the axes. (4)

Given that the equation

$$|2x - a| + b = \frac{3}{2}x + 8$$

has a solution at x = 0 and a solution at x = c,

(b) find c in terms of a.

(4) June 17 Q6