Functions 2 - Edexcel Past Exam Questions

1. The function f is defined by

$$
\mathrm{f}: x \mapsto \frac{3(x+1)}{2 x^{2}+7 x-4}-\frac{1}{x+4}, \quad x \in \mathbb{R}, x>\frac{1}{2} .
$$

(a) Show that $\mathrm{f}(x)=\frac{1}{2 x-1}$.
(b) Find $\mathrm{f}^{-1}(x)$.
(c) Find the domain of f^{-1}.

$$
\mathrm{g}(x)=\ln (x+1) .
$$

(d) Find the solution of $\mathrm{fg}(x)=\frac{1}{7}$, giving your answer in terms of e .
2. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto \mathrm{e}^{x}+2, & x \in \mathbb{R}, \\
\mathrm{~g}: x \mapsto \ln x, & x>0 .
\end{array}
$$

(a) State the range of f .
(b) Find $\mathrm{fg}(x)$, giving your answer in its simplest form.
(c) Find the exact value of x for which $\mathrm{f}(2 x+3)=6$.
(d) Find f^{-1}, the inverse function of f , stating its domain.
(e) On the same axes sketch the curves with equation $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, giving the coordinates of all the points where the curves cross the axes.
3. The function f has domain $-2 \leq x \leq 6$ and is linear from $(-2,10)$ to $(2,0)$ and from $(2,0)$ to $(6,4)$. A sketch of the graph of $y=\mathrm{f}(x)$ is shown in Figure 1 .

Figure 1
(a) Write down the range of f .
(b) Find ff(0).

The function g is defined by

$$
\mathrm{g}: x \rightarrow \frac{4+3 x}{5-x}, \quad x \in \mathbb{R}, \quad x \neq 5
$$

(c) Find $\mathrm{g}^{-1}(x)$.
(d) Solve the equation $\operatorname{gf}(x)=16$.
4. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto 2|x|+3, & x \in R \\
\mathrm{~g}: x \mapsto 3-4 x, & x \in R
\end{array}
$$

(a) State the range of f .
(b) Find $\mathrm{fg}(1)$.
(c) Find g^{-1}, the inverse function of g .
(d) Solve the equation

$$
\begin{equation*}
\operatorname{gg}(x)+[\mathrm{g}(x)]^{2}=0 \tag{5}
\end{equation*}
$$

June 13(R) Q4
5.

Figure 1

Figure 1 shows part of the graph with equation $y=\mathrm{f}(x), x \in \mathbb{R}$.
The graph consists of two line segments that meet at the point $Q(6,-1)$.
The graph crosses the y-axis at the point $P(0,11)$.
Sketch, on separate diagrams, the graphs of
(a) $y=|\mathrm{f}(x)|$
(b) $y=2 \mathrm{f}(-x)+3$

On each diagram, show the coordinates of the points corresponding to P and Q.
Given that $\mathrm{f}(x)=a|x-b|-1$, where a and b are constants,
(c) state the value of a and the value of b.
6.

$$
\begin{equation*}
\mathrm{g}(x)=\frac{x}{x+3}+\frac{3(2 x+1)}{x^{2}+x-6}, \quad x>3 \tag{4}
\end{equation*}
$$

(a) Show that $\mathrm{g}(x)=\frac{x+1}{x-2}, x>3$
(b) Find the range of g .
(c) Find the exact value of a for which $\mathrm{g}(a)=\mathrm{g}^{-1}(a)$.

June 14 Q5
7. (a) Sketch the graph with equation

$$
\begin{equation*}
y=|4 x-3| \tag{2}
\end{equation*}
$$

stating the coordinates of any points where the graph cuts or meets the axes.
Find the complete set of values of x for which
(b)

$$
\begin{equation*}
|4 x-3|>2-2 x \tag{4}
\end{equation*}
$$

(c)

$$
\begin{equation*}
|4 x-3|>\frac{3}{2}-2 x \tag{2}
\end{equation*}
$$

June 14(R) Q5
8. The function f is defined by

$$
\mathrm{f}: x \rightarrow \mathrm{e}^{2 x}+k^{2}, \quad x \in \mathbb{R}, \quad k \text { is a positive constant. }
$$

(a) State the range of f .
(b) Find f^{-1} and state its domain.

The function g is defined by

$$
\mathrm{g}: x \rightarrow \ln (2 x), \quad x>0
$$

(c) Solve the equation

$$
\mathrm{g}(x)+\mathrm{g}\left(x^{2}\right)+\mathrm{g}\left(x^{3}\right)=6
$$

giving your answer in its simplest form.
(d) Find $\mathrm{fg}(x)$, giving your answer in its simplest form.
(e) Find, in terms of the constant k, the solution of the equation

$$
\begin{equation*}
\operatorname{fg}(x)=2 k^{2} \tag{2}
\end{equation*}
$$

9. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \rightarrow 7 x-1, \quad x \in \mathbb{R}, \\
& \mathrm{~g}: x \rightarrow \frac{4}{x-2}, \quad x \neq 2, x \in \mathbb{R},
\end{aligned}
$$

(a) Solve the equation $\mathrm{fg}(x)=x$.
(b) Hence, or otherwise, find the largest value of a such that $\mathrm{g}(a)=\mathrm{f}^{-1}(a)$.
10.

Figure 1
Figure 1 shows a sketch of part of the graph of $y=g(x)$, where

$$
\mathrm{g}(x)=3+\sqrt{x+2}, \quad x \geqslant-2
$$

(a) State the range of g .
(b) Find $\mathrm{g}^{-1}(x)$ and state its domain.
(c) Find the exact value of x for which

$$
\begin{equation*}
\mathrm{g}(x)=x \tag{4}
\end{equation*}
$$

(d) Hence state the value of a for which

$$
\begin{equation*}
\mathrm{g}(a)=\mathrm{g}^{-1}(a) \tag{1}
\end{equation*}
$$

11. Given that a and b are positive constants,
(a) on separate diagrams, sketch the graph with equation
(i) $y=|2 x-a|$
(ii) $y=|2 x-a|+b$

Show, on each sketch, the coordinates of each point at which the graph crosses or meets the axes.

Given that the equation

$$
|2 x-a|+b=\frac{3}{2} x+8
$$

has a solution at $x=0$ and a solution at $x=c$,
(b) find c in terms of a.

