

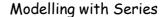
Modelling with Series 2 - Edexcel Past Exam Questions MARK SCHEME

Question	Scheme	Marks
(a)	$S_{10} = \frac{10}{2} [2P + 9 \times 2T]$ or $\frac{10}{2} (P + [P + 18T])$	Ml
	e.g. $5[2P+18T]$ = (£) $(10P+90T)$ or (£) $10P+90T$ (*)	Alcso (2)
(b)	Scheme 2: $S_{10} = \frac{10}{2} [2(P+1800)+9T] = \{10P+18000+45T\}$	MlAl
	10P + 90T = 10P + 18000 + 45T	Ml
	90T = 18000 + 45T T = 400 (only)	A1 (4)
(c)	Scheme 2, Year 10 salary: $[a+(n-1)d=](P+1800)+9T$	Blft
	P + 1800 + "3600" = 29850	Ml
	P = (£) 24450	A1 (3)
	570.00	9 marks
	Notes	
(a)	M1 for identifying $a = P$ or $d = 2T$ and attempt at S_{10} . Using $n = 10$ and on	e of a or d
List	Do not penalise missing end bracket in working eg 5(2P + 18T M1A1 for a full list seen (with + signs or written in columns) and no incorrect v Any missing terms is M0A0	vorking seen.
(b)	1 st M1 for attempting S_{10} for scheme 2 (allow missing () brackets e.g. $2P$	+ 1800 + 97)
	Using $n = 10$ and at least one of a or d correct.	
4000	1 st A1 for a correct expression for S_{10} using scheme 2 (needn't be multiplied	
List	Allow M1A1 if they reach $10P + 18000 + 45T$ with no incorrect wor 10P + 18000 + 45T with no working is M1A1	rking seen
	2 nd M1 for forming an equation using the two sums that would enable P to b	e eliminated.
	Follow through their expressions provided P would disappear.	
	2^{nd} A1 for $T = 400$ Answer only (4/4)	
(c)	B1 for using u_{10} for scheme 2. Can be 9T or follow through their value of	T
	M1 for forming an equation based on u_{10} for scheme 2 and using 29850 and	d their value of
	T	
	A1 for 24450 seen Answer only (3/3)	
MR	If they misread scheme 2 as scheme 1 in part (c) apply MR rule and aw max for an equation based on u_{10} for scheme 1 and using 29850 and the	

Question Number	Scheme	Mark	5
чишися	Boy's Sequence: 10, 15, 20, 25,		_
(a)	$\{a=10, d=5 \Rightarrow T_{13}=\}$ $a+14d=10+14(5); = 80$ or $0.1+14(0.05); = £0.80$	M1; A1	[2
(b)	${S_{60} =} \frac{60}{2} [2(10) + 59(5)]$	M1 A1	
	= 30(315) = 9450 or £94.50	A1	[3
	Boy's Sister's Sequence: 10, 20, 30, 40,		
(c)	${a = 10, d = 10 \Rightarrow S_m =} \frac{m}{2} (2(10) + (m-1)(10))$ or $\frac{m}{2} \times 10(m+1)$ or $5m(m+1)$	M1 A1	
	63 or 6300 = $\frac{m}{2}$ (2(10) + (m-1)(10))	dM1	
	$6300 = \frac{m}{2}(10)(m+1) \text{ or } 12600 = 10m(m+1)$		
	1260 = m(m+1)		
	$35 \times 36 = m(m+1)$ (*)	A1 cso	
(d)	{m =} 35	В1	[-
			'n
4-3	Notes M1: for using the formula $a + 14d$ with either a or d correct.		
(a)	A1: for 80 or 80p or £0.80 or £0.80p and apply ISW. Otherwise, £80 or 0.80 or 0.80p wo	uld be 40	
	Award M0 if candidate applies a + 59d.		
	Listing the first 15 terms and highlighting that the 15th term is 80 or listing 15 terms with the aligned with 80 will then be awarded all two marks of M1A1. Writing down 80 with no working is M1A1.	final 15 th tem	m
(b)	M1: for use of correct $\frac{60}{2}$ [2(10) + 59(5)] or $\frac{15}{2}$ (2(10) + 14(5))		
	2 2		
	with $a = 10$, $d = 5$ and $n = 60$ or $a = 10$, $d = 5$ and $n = 15$.		
	with $a = 10$, $d = 5$ and $n = 60$ or $a = 10$, $d = 5$ and $n = 15$. If a candidate uses $\frac{n}{2}(a + I)$ with $n = 60$ or 15, there must be a full method of finding or state	ing <i>l</i> as eithe	er
	with $a = 10$, $d = 5$ and $n = 60$ or $a = 10$, $d = 5$ and $n = 15$. If a candidate uses $\frac{n}{2}(a + l)$ with $n = 60$ or 15, there must be a full method of finding or state $a + 59d$ (= 305) or $a + 14d$ (= 80), respectively.	ing <i>l</i> as eithe	er
	with $a = 10$, $d = 5$ and $n = 60$ or $a = 10$, $d = 5$ and $n = 15$. If a candidate uses $\frac{n}{2}(a + I)$ with $n = 60$ or 15, there must be a full method of finding or state	ing <i>l</i> as eithe	er
	with $a = 10$, $d = 5$ and $n = 60$ or $a = 10$, $d = 5$ and $n = 15$. If a candidate uses $\frac{n}{2}(a + l)$ with $n = 60$ or 15, there must be a full method of finding or state $a + 59d$ (= 305) or $a + 14d$ (= 80), respectively. 1 st A1: for a correct expression for S_{co} : i.e. $\frac{60}{2}[2(10) + 59(5)]$ or $\frac{60}{2}[2(0.1) + 59(0.05)]$ or $\frac{60}{2}[10 + 305]$ or $\frac{60}{2}[0.10 + 3.05]$. This mark can be implied by later working	g.	
	with $a = 10$, $d = 5$ and $n = 60$ or $a = 10$, $d = 5$ and $n = 15$. If a candidate uses $\frac{n}{2}(a + l)$ with $n = 60$ or 15, there must be a full method of finding or state $a + 59d$ (= 305) or $a + 14d$ (= 80), respectively. 1 st A1: for a correct expression for S_{so} , i.e. $\frac{60}{2}[2(10) + 59(5)]$ or $\frac{60}{2}[2(0.1) + 59(0.05)]$ or $\frac{60}{2}[10 + 305]$ or $\frac{60}{2}[0.10 + 3.05]$. This mark can be implied by later working 2^{sol} A1: for 9450 or 9450p or £94.50 and apply ISW. Otherwise, £9450 or 94.50 with	g.	
	with $a = 10$, $d = 5$ and $n = 60$ or $a = 10$, $d = 5$ and $n = 15$. If a candidate uses $\frac{n}{2}(a + l)$ with $n = 60$ or 15, there must be a full method of finding or state $a + 59d$ (= 305) or $a + 14d$ (= 80), respectively. 1 st A1: for a correct expression for S_{co} : i.e. $\frac{60}{2}[2(10) + 59(5)]$ or $\frac{60}{2}[2(0.1) + 59(0.05)]$ or $\frac{60}{2}[10 + 305]$ or $\frac{60}{2}[0.10 + 3.05]$. This mark can be implied by later working	g.	

Question Number		Scheme	Mark	CS.
(a)	120000×(1.05) ³ =138915*	Or $120000 \times 1.05 \times 1.05 \times 1.05 = 138915$ Or 120000 , 126000 , 132300 , 138915 Or $a = 120000$ and $a \times (1.05)^3 = 138915$	B1	
				(1)
(b)	$120000 \times (1.05)^{n-1} > 200000$	Allow n or $n-1$ and ">", "<", or "=" etc.	M1	
	$\log 1.05^{n-1} > \log \left(\frac{5}{3}\right)$	Takes logs correctly Allow n or $n-1$ and ">", "<", or "=" etc.	M1	
	$(n-1>)\frac{\log\left(\frac{5}{3}\right)}{\log 1.05} \text{ or equivalent}$ e.g $(n>)\frac{\log\left(\frac{7}{4}\right)}{\log 1.05}$	Allow n or $n - 1$ and ">", "<", or "=" etc. Allow 1.6 or awrt 1.67 for 5/3.	Al	
	2024	M1: Identifies a calendar year using their value of n or n - 1 A1: 2024	M1A1	
				(5)
	$\frac{a(1-r^n)}{a(1-r^n)} = \frac{120000(1-1.05^{11})}{120000(1-1.05^{11})}$	M1: Correct sum formula with $n = 10$, 11 or 12		
(c)	1-r = 1-1.05	A1: Correct numerical expression with $n = 11$	M1 A1	
	1704814	Cao (Allow 1704814.00)	A1	
				(3)
				[9]
		r trial/improvement in (b)		
	Attempt to find at least the 10 th or 1	U ₁₁ = 195 467.36, U ₁₂ = 205 240.72 1 th or 12 th terms correctly using a common ratio of 1.05 terms need not be listed)	M1	
		gression correctly to reach a term > 200 000	M1	
		wrt 195 500 and a "12 th " term of awrt 205 200	A1	
	Uses their number	r of terms to identify a calendar year	M1	
		2024	A1	
				(5)

Question Number	Scheme		Marks
	Lewis; arithmetic series, $a = 140$, $d = 20$.		
(a)	OR 120 + (20)(20)	ists 20 terms to get to 520	M1; A1
(b)	Method 1 Meth Either: Uses $\frac{1}{2}n(2a + (n-1)d)$ Or:	Uses $\frac{1}{2}n(a+l)$	M1
	$\frac{20}{2}(2\times140+(20-1)(20))$	$\frac{20}{2}(140 + "520")$ ft 520	A1
(c)	Sian; arithmetic series,		A1 [3
	$a = 300, l = 700, S_n = 8500$	Mary use both	
	Either: Attempt to use $8500 = \frac{n}{2}(a+l)$	May use both $8500 = \frac{1}{2}n(2a + (n-1)d)$ and $l = a + (n-1)d$ and eliminate d	M1
	$8500 = \frac{n}{2} (300 + 700)$	$8500 = \frac{n}{2} (600 + 400)$	A1
	$\Rightarrow n = 17$		A1 [3
			8 marks
	Notes		
(a)	M1: Attempt to use formula for 20 th term of Arithmetic ser formula rules apply – see General principles at the start of Or: uses 120 + 20n with n = 20 Or: Listing method: Lists 140, 160, 180, 200, 220, 240, 20 wrong. (So 2 marks or zero) A1: For 520	the mark scheme re "Method Marks"	22
(b)	M1: An attempt to apply $\frac{1}{2}n(2a + (n-1)d)$ or $\frac{1}{2}n(a+l)$ of A1: Uses $a = 140$, $d = 20$, $n = 20$ in their formula (two alters from (a) if they use Method 2. A1: 6600 cao Or: Listing method: Lists 140, 160, 180, 200, 220, 240, 26600 gets M1A1A1- any other answer gets M1 A0A0 provide last is 520.	natives given above) but ft on their 60, 280, 520 and adds	
(c) First method	M1: Attempt to use $S_n = \frac{n}{2}(a+l)$ with their values for a ,	and l and S=8500	
Alternative method	A1: Uses formula with correct values A1: Finds exact value 17 M1: If both formulae $8500 = \frac{1}{2}n(2a + (n-1)d)$ and $l = a$ before this mark is awarded by valid work. Should not be us		eliminated
	A1: Correct equation in n only then A1 for 17 exactly Trial and error methods: Finds $d = 25$ and $n = 17$ and list		- 3/3


Question Number	Scheme	e	Marks	5
(a)	$600 = 200 + (N-1)20 \implies N =$	Use of 600 with a correct formula in an attempt to find N. A correct formula could be implied by a correct answer.	M1	
	N = 21	cso	A1	
	Accept correct an	swer only.		
	$\frac{600 = 200 + 20N \implies N = 20 \text{ is}}{\frac{600 - 200}{20}} = 20 : N = 21 \text{ is M1A}$			
	20 : N = 211s M1A	I (correct formula implied)		
	Listing: All terms must be listed up to	600 and 21 correctly identified.		
	A solution that scores 2 if fully	correct and 0 otherwise.		
				(2)
(b)	Look for an A			
	$S = \frac{21}{2}(2 \times 200 + 20 \times 20) \text{ or } \frac{21}{2}(200 + 600)$ or $S = \frac{20}{2}(2 \times 200 + 19 \times 20) \text{ or } \frac{20}{2}(200 + 580)$	M1: Use of correct sum formula with their integer $n = N$ or $N - 1$ from part (a) where $3 < N < 52$ and $a = 200$ and $d = 20$. A1: Any correct un-simplified	M1A1	
	(= 8400 or 7800)	numerical expression with $n = 20$ or $n = 21$ (No follow through here)		
	Then for the cons	tant terms:		
	600×(52-"N") (= 18600)	M1: $600 \times k$ where k is an integer and $3 < k < 52$ A1: A correct un-simplified follow through expression with their k consistent with n so that $n + k = 52$	M1A1ft	
	So total is 27000	Cao	A1	
	Note that for the constant terms, they may	correctly use an AP sum with $d = 0$.		
	There are no marks in (b)	for just finding S ₅₂		
				(5)
				[7
	If they obtain $N = 20$ in (a) $(0/2)$ as $S = \frac{20}{2}(2 \times 200 + 19 \times 20) + 32 \times 600$ allow them to 'recover' and similar! If they obtain $N = 22$ in (a) $(0/2)$ as $S = \frac{21}{2}(2 \times 200 + 20 \times 20) + 31 \times 600$	0 = 7800 + 19 200 = 27 000 score full marks in (b) y nd then in (b) proceed with,		
	allow them to 'recover' and	score full marks in (b)		

Question Number	Scheme	Notes	Marks
(a)	$U_{10} = 500 + (10 - 1) \times 200$	Uses $a + (n-1)d$ with $a=500$, $d=200$ and $n = 9,10$ or 11	M1
	=(£)2300		A1
	-	numerical expression is incorrect score M0. working scores full marks.	(2
(b)	Mark parts (b)	and (c) together	
	$\frac{n}{2} \left\{ 2 \times 500 + (n-1) \times 200 \right\} = 67200$	M1: Attempt to use $S = \frac{n}{2} \{2a + (n-1)d\}$ with, $S_n = 67200$, $a = 500$ and $d = 200$	M1A1
		A1: Correct equation	
	If the sum formula is not quoted an	d the equation is incorrect score M0.	
	$n^2 + 4n - 672 = 0$	M1: An attempt to remove brackets and collect terms. Dependent on the previous M1 A1: A correct three term equation in any form	dM1A1
	E.g. allow $n^2 + 4n =$	$672 , n^2 = 672 - 4n ,$	
		$0n^2 + 800n = 134400$ etc.	
	$n^2 + 4n - 24 \times 28 = 0$	Replaces 672 with 24×28 with the equation as printed (including = 0) with no errors. (= 0 may not appear on the last line but must be seen at some point)	A1
			(5
(c)	$(n-24)(n+28) = 0 \Rightarrow n =$ or $n(n+4) = 24 \times 28 \Rightarrow n =$	Solves the given quadratic in an attempt to find n. They may use the quadratic formula.	M1
	24	States that $n = 24$, or the number of years is 24	A1
	Allow correct a	nswer only in (c)	
			(2
			[9

Question Number	Scheme	Marks	
	(a) Use n^{th} term = $a + (n-1)d$ with $d = 10$; $a = 150$ and $n = 8$, or $a = 160$ and	M1	
	n = 7, or $a = 170$ and $n = 6$: = 150+7×10 or 160+6×10 or 170+5×10 = 220* (Or gives clear list – see note)	A1*	
	- 220 (Of gives cical list – see note)	Ai	(2)
Or	If answer 220 is assumed and $150 + (n-1)$ 10 =220 or variation is solved for $n=$	M1	(2)
	Then $n = 8$, so 2007 is the year (must conclude the year)	A1*	(2)
	(b) Use $S_n = \frac{n}{2} \{2a + (n-1)10\}$ Or $S_n = \frac{n}{2} \{a+l\}$ and $l = a + (n-1)10$	M1	
	= 7(300+13×10) or 7(150 + 280)	A1	
	= 7×430		
	= 3010	A1	(2)
	(c) Cost in year $n = 900+(n-1)\times-20$	M1	(3)
	Sales in year $n = 150 + (n-1) \times 10$		
	Cost =3×Sales \Rightarrow 900+(n-1)×-20 = 3×(150+(n-1)×10) 900-20n+20 = 450+30n-30	M1	
	500 = 50n n = 10	3.61	
	n=10 Year is 2009	M1 A1	
		AI	
	As n is not defined they may work correctly from another base year to get the answer 2009 and their n may not equal 10. If doubtful – send to review.		(4)
	and answer 2005 and then it may not equal to. It dottoffer sent to review.	(9 marks)	

Notes

- (a) M1 Attempt to use n^{th} term = a + (n-1)d with d = 10, and correct combination of a and n i.e. a = 150 and n = 8 or a = 160 and n = 7, or a = 170 and n = 6
 - A1 * Shows that 220 computers are sold in 2007 with no errors

Note that this is a given solution, so needed 150+7×10 or 160+6×10 or 170+5×10 or equivalent.

Accept a correct list showing all values and years for both marks Just 150,160,170,180,190,200,210,220 is M1A0 Need some reference to years as well as the list of numbers of computers for A1.

- (b) M1 Attempts to use $S_n = \frac{n}{2} \{2a + (n-1)d\}$ with d = 10, and correct combination of a and n i.e. a = 150 and n = 14, or a = 160 and n = 13, or a = 170 and n = 12
 - A1 Uses $S_n = \frac{n}{2} \{2a + (n-1)d\}$ with a = 150, d = 10 and n = 14 [N.B. $S_n = \frac{n}{2} \{a + l\}$ needs l = a + (n-1)d as well

NB A0 for a = 160 and n = 13 or a = 170 and n = 12 unless they then add the first, or first two terms respectively.

A1 Cao 3010. This answer (with no working) implies correct method M1A1A1.

Special case: If a complete list 150+160+170+180+190+200+210+220+230+240+250+260+270+280 is seen, then there is an error finding the sum then score M1A1A0, but incomplete or wrong lists score M0A0A0

- (c) M1 Writes down an expression for the cost = 900+(n−1)×-20 or writes 900 + (n − 1) d and states d = -20 Allow 900 + n ×-20. Allow recovery from invisible brackets.
 - M1 Attempts to write down an equation in n for statement 'cost =3×sales' $900+(n-1)\times-20=3\times(150+(n-1)\times10)$. Accept the 3 on the wrong side and allow use of 20 instead of -20 and allow n (consistently) instead of n-1 for this mark. Ignore £ signs in equation.
 - M1 Solves the correct linear equation in n to achieve n = 10 (for those using n 1) or n = 9 (for those using n). Ignore £ signs.
 - A1 Cso Year 2009 (A0 for the answer Year 10 if 2009 is not given)

Special case. Just answer or trial and improvement with no equation leading to answer scores SC 0,0,1,1 Equations satisfying the method mark descriptors followed by trial and improvement could get all four marks

Question Number	Scheme	Marks
(a).	Attempts to use $a+(n-1)$ " d " with $a=A$ and " d "= $d+1$ and $n=14$ $A+13(d+1)=A+13d+13*$	M1 A1*
(b)	Calculates time for Yi on Day $14=(A-13)+13(2d-1)$ Sets times equal $A+13d+13=(A-13)+13(2d-1) \Rightarrow d=$ d=3	M1 M1 A1 eso
(c)	Uses $\frac{n}{2} \{2A + (n-1)(D)\}$ with $n = 14$, and with $D = d$ or $d + 1$ Attempts to solve $\frac{14}{2} \{2A + 13 \times (d+1)'\} = 784 \Rightarrow A =$	M1 dM1
	A = 30	A1 (3)
		(8 marks)

- (a) M1 Attempts to use a + (n-1)d with a=A and d=d+1 AND n=14
 - A1* cao This is a given answer and there is an expectation that the intermediate answer is seen and that all work is correct with correct brackets.

The expressions A+13(d+1) and A+13d+13 should be seen

N.B. If brackets are missing and formula is not stated

e.g. $A+13d+1 \Rightarrow A+13d+13$ or $A+(13)d+1 \Rightarrow A+13d+13$ then this is M0A0

If formula is quoted and a = A and d = d + 1 is quoted or implied, then M1 A0 may be given So a + (n-1)d followed by A + (13)d + 1 = A + 13d + 13 achieves M1A0

- (b) M1 States a time for Yi on Day 14 = (A-13)+13(2d-1)
 - M1 Sets their time for Yi, equal to A+13d+13 and uses this equation to proceed to d=
 - A1 cso d=3 Needs both M marks and must be simplified to 3 (not 39/13)

[NB Setting each of the times separately equal to 0 leads to d = 3 - this will gain M0A0]

- (c) M1 Uses the sum formula $\frac{n}{2} \{2A + (n-1)(D)\}$ with n = 14 and D = d+1 or allow D = d(usually 4 or 3)

 NB. May use $\frac{n}{2} \{4 + (4+13D)\}$ with n = 14 and and D = d+1 or allow D = d
 - NB May use $\frac{n}{2}$ {A + (A+13D)} with n = 14 and and D = d+1 or allow D = d (usually 4 or 3)
 - dM1 Attempts to solve $\frac{14}{2} \{2A+13\times'4'\} = "784" \Rightarrow A = ...$ (Must use their d+1 this time) Allow miscopy of 784
 - A1 cao A = 30

Question Number					Sche	me				Marks
(a)	3200	00 =1700	0+(k-1))×1500=	<i>⇒ k</i> =	in an atte	2000 with a empt to find could be in	k. A con	rect	M1
			(k =) 11	1		Cso (All	low n = 11)		A1
				Accept	t correct	answer or	ıly.			
				0 + 1500	$k \Rightarrow k =$	10 is M0A	40 (wrong	formula)		
			17000 500	=10 : k	=11 is M	IAI (con	ect formula	a implied))	
	Li				_		nd 11 corre		tified.	
		A	solution t	hat score	s 2 if ful	ly correct	and 0 othe	rwise.		(2)
4)				61			3.61 TT	c .		(2)
(b)		c k		M1:	1500\ -		M1: Use of formula w			
			2×17000		×1300)0	r	n = k or k		_	
		-	(17000+3				where 3<			
		$S = \frac{k-1}{2}$	(2×17000	+(k-2))×1500)	or	17000 and			
		<u>k</u> -	17000	+30500)			below for		case for	M1A1
				A1:			using $n =$	20.		WIAI
	$S = \frac{1}{2}$	1 (2×170	00+10×1	1500) or 1	11/2 (17000 -	+32000)	A1: Any	correct ur	1-	
		$S = \frac{1}{2}$	10/2 (2×170	$000 + 9 \times 1$	500) or		simplified			
			½(1700	00+3050	0)		expression	n with n =	= 11 or	
		(:	= 269 500				n = 10			
						32000×	α where α	via an int		
			32000×	α		and 3 <		as an mi	egei	M1
						M1: Att	empts to ac	ld their tv	vo	
		288 000	+ 269 500	0 = 557.5	500		t is depend			
			or			-	M's being		ınd must	ddM1A1
		320 000	+ 237 500	0 = 557.5	500		um of 20 te	rms i.e.		002/1111
						$\alpha + k = 1$ A1: 557				-
	Sr	ecial Ca	se: If the	ev just fi	nd Sza (f		in (b) scor	e the firs	st M1	
	~1					y the sche				
										(5)
										(7 marks)
			_			ing:				10
n 1'	1 7000	2 18500	3 20000	4 21500	5 23000	6 24500	7 26000	8 27500	9 29000	10 30500
$\frac{u_n}{n}$	11	12	13	14	15	16	17	18	19	20
	2000	32000	32000	32000	32000	32000	32000	32000	32000	32000
							M's as abo			
				_			n apply the			

Question Number	Scheme	Notes	Marks
(a)	John; arithmetic series,	a = 60, d = 15.	
	$60 + 75 + 90 = 225^*$ or $S_3 = \frac{3}{2}(120 + (3-1)(15)) = 225^*$	Finds and adds the first 3 terms or uses sum of 3 terms of an AP and obtains the printed answer, with no errors.	B1 *
	The 12 th term of the sequence is 225 also so look	$\frac{1}{60}$ out for $60 + (12 - 1) \times 15 = 225$. This is B0.	
(b)	$t_9 = 60 + (n-1)15 = (£)180$	M1: Uses $60 + (n-1)15$ with $n = 8$ or 9 A1: $(£)180$	[1] M1 A1
	Listing M1: Uses $a = 60$ and $d = 15$ to select the 8 ^t A1: $(£)$ 18 (Special case $(£)$ 165 on	h or 9 th term (allow arithmetic slips)	
			[2]
(c)	$S_n = \frac{n}{2} (120 + (n-1)(15))$ or $S_n = \frac{n}{2} (60 + 60 + (n-1)(15))$	Uses correct formula for sum of n terms with $a = 60$ and $d = 15$ (must be a correct formula but ignore the value they use for n or could be in terms of n)	M1
	$S_n = \frac{12}{2}(120 + (12 - 1)(15))$	Correct numerical expression	A1
	=(£)1710	cao	A1
	M1: Uses $a = 60$ and $d = 15$ and finds the sum of A2: $(£)17$	f at least 12 terms (allow arithmetic slips)	[3]
(d)	$3375 = \frac{n}{2}(120 + (n-1)(15))$	Uses correct formula for sum of n terms with $a = 60$, $d = 15$ and puts = 3375	M1
	$6750 = 15n(8 + (n - 1)) \Rightarrow 15n^2 + 105n = 6750$	Correct three term quadratic. E.g. $6750 = 105n + 15n^2$, $3375 = \frac{15}{2}n^2 + \frac{105}{2}n$ This may be implied by equations such as $6750 = 15n(n+7)$ or $3375 = \frac{15}{2}(n^2 + 7n)$	A1
	$n^2 + 7n = 25 \times 18$ *	Achieves the printed answer with no errors but must see the 450 or 450 in factorised form or e.g. 6750, 3375 in factorised form i.e. an intermediate step.	A1*
(e)	n = 18 ⇒ Aged 27	M1: Attempts to solve the given quadratic or states n = 18 A1: Age = 27 or just 27	[3] M1 A1
t	Age = 27 only scores both marks (i		
1	Note that (e) is not hence so allow valid attem		
			[2]
			11 marks

Question Number	Sch	eme	Marks
(a)	$206 = 140 + (12 - 1) \times d \Rightarrow d =$	Uses $206=140+(12-1)\times d$ and proceeds as far as $d=$	M1
	(<i>d</i> =)6	Correct answer only can score both marks.	A1
			(2)
(b)		Attempts $S_n = \frac{n}{2}(a+l)$ or $S_n = \frac{n}{2}(2a+(n-1)d)$ with $n = 12$,	
	$S_{12} = \frac{12}{2} (140 + 206) \text{ or}$	a = 140, l = 206, d = '6' WAY 1 Or	
	$S_{12} = \frac{12}{2} (2 \times 140 + (12 - 1) \times "6")$ or $S_{11} = \frac{11}{2} (140 + 206 - "6")$ or	Attempts $S_n = \frac{n}{2}(a+l)$ or	M1
	$S_{11} = \frac{1}{2} (140 + 200 - 6) \text{ or}$ $S_{11} = \frac{11}{2} (2 \times 140 + (11 - 1) \times \text{"}6\text{"})$	$S_n = \frac{n}{2} (2a + (n-1)d)$ with $n = 11$,	
	$S_{11} = \frac{1}{2}(2 \times 140 + (11 - 1) \times 6)$	a = 140, l = 206 - 6', d = 6' WAY2 If they are using	
		$S_n = \frac{n}{2} (2a + (n-1)d), \text{ the } n \text{ must}$	
	G OOGGWAYA	be used consistently.	
	S = 2076 WAY1 or $S = 1870 WAY 2$	Correct sum (may be implied)	A1
		Attempts to find (52-12)×206 or	
	$(52-12)\times 206 =$ or $(52-11)\times 206 =$	$(52-11)\times 206$. Does not have to be consistent with their n used for the first Method mark.	M1
	Total ="2076"+"8240"= (WAY 1) or Total ="1870"+"8446"= (WAY 2)	Attempts to find the total by adding the sum to 12 terms with (52 - 12) lots of 206 or attempts to find the total by adding the sum to 11 terms with (52 - 11) lots of 206. I.e. consistency is now required for this mark. Dependent on both previous method marks.	ddM1
	10316	cao	A1
			(5)
			(7 marks)

Modelling with Series

Week 1 2 3 4 5 6 7			Listing in (b):									
Total 140 286 438 596 760 930 1106		Weel	k	1	2	3	4	5	6	7]	
8 9 10 11 12 13 52 182 188 194 200 206 206 206 1288 1476 1670 1870 2076 2282 10316 M1: Attempts the sum of either 12 or 11 terms of a series with first term 140 and their d up to 140 +11d or 140 + 10d. A1: S = 2076 or 1870 Then follow the scheme Special case in (b) - Treats as single AP with n = 52		Bicycle	es 1	140	146	152	158	164	170	176]:	
182 188 194 200 206 206 206 1288 1476 1670 1870 2076 2282 10316		Tota	1 1	140	286	438	596	760	930	1106]	
182 188 194 200 206 206 206 1288 1476 1670 1870 2076 2282 10316 M1: Attempts the sum of either 12 or 11 terms of a series with first term 140 and their d up to 140 +11d or 140 + 10d. A1: S = 2076 or 1870 Then follow the scheme Special case in (b) - Treats as single AP with n = 52												
M1: Attempts the sum of either 12 or 11 terms of a series with first term 140 and their d up to 140 +11d or 140 + 10d. A1: S = 2076 or 1870 Then follow the scheme Special case in (b) – Treats as single AP with n = 52		8	9	10	11	12	13		52	1		
M1: Attempts the sum of either 12 or 11 terms of a series with first term 140 and their d up to 140 +11d or 140 + 10d. A1: S = 2076 or 1870 Then follow the scheme Special case in (b) - Treats as single AP with n = 52		182	188	194	200	206	206		206			
140 and their d up to 140 +11d or 140 + 10d. A1: S = 2076 or 1870 Then follow the scheme Special case in (b) - Treats as single AP with n = 52		1288	1476	1670	1870	2076	2282		10316	1		
		A1: S = 2076 or 1870										
$S_n = \frac{1}{2}(2 \times 140 + (32 - 1) \times 6^n) = 13236$ Scores 11000												
M1 : $S_n = \frac{n}{2} (2a + (n-1)d)$ with $n = 52$, $a = 140$, $d = 6$ Al: 15236		м		_								