Modelling with Trigonometric Functions 2 - Edexcel Past Exam Questions

1.

Figure 2
Kate crosses a road, of constant width 7 m , in order to take a photograph of a marathon runner, John, approaching at $3 \mathrm{~m} \mathrm{~s}^{-1}$.

Kate is 24 m ahead of John when she starts to cross the road from the fixed point A.
John passes her as she reaches the other side of the road at a variable point B, as shown in Figure 2.

Kate's speed is $V \mathrm{~m} \mathrm{~s}^{-1}$ and she moves in a straight line, which makes an angle θ, $0<\theta<150^{\circ}$, with the edge of the road, as shown in Figure 2.

You may assume that V is given by the formula

$$
V=\frac{21}{24 \sin \theta+7 \cos \theta}, \quad 0<\theta<150^{\circ}
$$

(a) Express $24 \sin \theta+7 \cos \theta$ in the form $R \cos (\theta-\alpha)$, where R and α are constants and where $R>0$ and $0<\alpha<90^{\circ}$, giving the value of α to 2 decimal places.

Given that θ varies,
(b) find the minimum value of V.

Given that Kate's speed has the value found in part (b),
(c) find the distance $A B$.

Given instead that Kate's speed is $1.68 \mathrm{~m} \mathrm{~s}^{-1}$,
(d) find the two possible values of the angle θ, given that $0<\theta<150^{\circ}$.
2.

Figure 1
Figure 1 shows the curve C, with equation $y=6 \cos x+2.5 \sin x$ for $0 \leq x \leq 2 \pi$.
(a) Express $6 \cos x+2.5 \sin x$ in the form $R \cos (x-\alpha)$, where R and α are constants with $R>0$ and $0<\alpha<\frac{\pi}{2}$. Give your value of α to 3 decimal places.
(b) Find the coordinates of the points on the graph where the curve C crosses the coordinate axes.

A student records the number of hours of daylight each Sunday throughout the year. She starts on the last Sunday in May with a recording of 18 hours, and continues until her final recording 52 weeks later.

She models her results with the continuous function given by

$$
H=12+6 \cos \left(\frac{2 \pi t}{52}\right)+2.5 \sin \left(\frac{2 \pi t}{52}\right), \quad 0 \leq t \leq 52
$$

where H is the number of hours of daylight and t is the number of weeks since her first recording.

Use this function to find
(c) the maximum and minimum values of H predicted by the model,
(d) the values for t when $H=16$, giving your answers to the nearest whole number.
[You must show your working. Answers based entirely on graphical or numerical methods are not acceptable.]

