1.

$$
\mathrm{f}(x)=3 \mathrm{e}^{x}-\frac{1}{2} \ln x-2, \quad x>0
$$

(a) Differentiate to find $\mathrm{f}^{\prime}(x)$.

The curve with equation $y=\mathrm{f}(x)$ has a turning point at P. The x-coordinate of P is α.
(b) Show that $\alpha=\frac{1}{6} \mathrm{e}^{-\alpha}$.

The iterative formula

$$
x_{n+1}=\frac{1}{6} \mathrm{e}^{-x_{n}}, \quad x_{0}=1
$$

is used to find an approximate value for α.
(c) Calculate the values of x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 decimal places.
(d) By considering the change of sign of $\mathrm{f}^{\prime}(x)$ in a suitable interval, prove that $\alpha=0.1443$ correct to 4 decimal places.
2.

$$
\mathrm{f}(x)=2 x^{3}-x-4
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
\begin{equation*}
x=\sqrt{\left(\frac{2}{x}+\frac{1}{2}\right)} \tag{3}
\end{equation*}
$$

The equation $2 x^{3}-x-4=0$ has a root between 1.35 and 1.4.
(b) Use the iteration formula

$$
\begin{equation*}
x_{n+1}=\sqrt{\left(\frac{2}{x_{n}}+\frac{1}{2}\right)} \tag{3}
\end{equation*}
$$

with $x_{0}=1.35$, to find, to 2 decimal places, the value of x_{1}, x_{2} and x_{3}.
The only real root of $\mathrm{f}(x)=0$ is α.
(c) By choosing a suitable interval, prove that $\alpha=1.392$, to 3 decimal places.
3.

Figure 2

Figure 2 shows part of the curve with equation

$$
y=(2 x-1) \tan 2 x, \quad 0 \leq x<\frac{\pi}{4} .
$$

The curve has a minimum at the point P. The x-coordinate of P is k.
(a) Show that k satisfies the equation

$$
\begin{equation*}
4 k+\sin 4 k-2=0 \tag{6}
\end{equation*}
$$

The iterative formula

$$
x_{n+1}=\frac{1}{4}\left(2-\sin 4 x_{n}\right), \quad x_{0}=0.3,
$$

is used to find an approximate value for k.
(b) Calculate the values of x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 decimals places.
(c) Show that $k=0.277$, correct to 3 significant figures.

June 06 Q5
4. The function f is defined by

$$
\mathrm{f}: x \mapsto \ln (4-2 x), \quad x<2 \text { and } x \in \mathbb{R}
$$

(a) Show that the inverse function of f is defined by

$$
\mathrm{f}^{-1}: x \mapsto 2-\frac{1}{2} \mathrm{e}^{x}
$$

and write down the domain of f^{-1}.
(b) Write down the range of f^{-1}.
(c) Sketch the graph of $y=\mathrm{f}^{-1}(x)$. State the coordinates of the points of intersection with the x and y axes.

The graph of $y=x+2$ crosses the graph of $y=\mathrm{f}^{-1}(x)$ at $x=k$.
The iterative formula

$$
x_{n+1}=-\frac{1}{2} \mathrm{e}^{x_{n}}, \quad x_{0}=-0.3,
$$

is used to find an approximate value for k.
(d) Calculate the values of x_{1} and x_{2}, giving your answer to 4 decimal places.
(e) Find the values of k to 3 decimal places.
5.

$$
\mathrm{f}(x)=-x^{3}+3 x^{2}-1
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be rewritten as

$$
\begin{equation*}
x=\sqrt{\left(\frac{1}{3-x}\right)} . \tag{2}
\end{equation*}
$$

(b) Starting with $x_{1}=0.6$, use the iteration

$$
x_{n+1}=\sqrt{\left(\frac{1}{3-x_{n}}\right)}
$$

to calculate the values of x_{2}, x_{3} and x_{4}, giving all your answers to 4 decimal places.
(c) Show that $x=0.653$ is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.

$$
\begin{equation*}
\text { June } 07 \text { Q4 } \tag{3}
\end{equation*}
$$

6.

$$
\begin{equation*}
\mathrm{f}(x)=\ln (x+2)-x+1, \quad x>-2, x \in \mathbb{R} . \tag{2}
\end{equation*}
$$

(a) Show that there is a root of $\mathrm{f}(x)=0$ in the interval $2<x<3$.
(b) Use the iterative formula

$$
x_{n+1}=\ln \left(x_{n}+2\right)+1, \quad x_{0}=2.5,
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(c) Show that $x=2.505$ is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.
7.

$$
f(x)=3 x^{3}-2 x-6 .
$$

(a) Show that $\mathrm{f}(x)=0$ has a root, α, between $x=1.4$ and $x=1.45$.
(b) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
\begin{equation*}
x=\sqrt{\left(\frac{2}{x}+\frac{2}{3}\right)}, x \neq 0 \tag{3}
\end{equation*}
$$

(c) Starting with $x_{0}=1.43$, use the iteration

$$
\begin{equation*}
x_{n+1}=\sqrt{\left(\frac{2}{x_{n}}+\frac{2}{3}\right)} \tag{3}
\end{equation*}
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places.
(d) By choosing a suitable interval, show that $\alpha=1.435$ is correct to 3 decimal places.
8.

$$
\mathrm{f}(x)=3 x \mathrm{e}^{x}-1 .
$$

The curve with equation $y=\mathrm{f}(x)$ has a turning point P.
(a) Find the exact coordinates of P.

The equation $\mathrm{f}(x)=0$ has a root between $x=0.25$ and $x=0.3$.
(b) Use the iterative formula

$$
\begin{equation*}
x_{n+1}=\frac{1}{3} \mathrm{e}^{-x_{n}} . \tag{3}
\end{equation*}
$$

with $x_{0}=0.25$ to find, to 4 decimal places, the values of x_{1}, x_{2} and x_{3}.
(c) By choosing a suitable interval, show that a root of $\mathrm{f}(x)=0$ is $x=0.2576$ correct to 4 decimal places.

Iterations
9.

Figure 1

Figure 1 shows part of the curve with equation $y=-x^{3}+2 x^{2}+2$, which intersects the x-axis at the point A where $x=\alpha$.

To find an approximation to α, the iterative formula

$$
x_{n+1}=\frac{2}{\left(x_{n}\right)^{2}}+2
$$

is used.
(a) Taking $x_{0}=2.5$, find the values of x_{1}, x_{2}, x_{3} and x_{4}. Give your answers to 3 decimal places where appropriate.
(b) Show that $\alpha=2.359$ correct to 3 decimal places.
10. $\mathrm{f}(x)=4 \operatorname{cosec} x-4 x+1$, where x is in radians.
(a) Show that there is a root α of $\mathrm{f}(x)=0$ in the interval $[1.2,1.3]$.
(b) Show that the equation $\mathrm{f}(x)=0$ can be written in the form

$$
\begin{equation*}
x=\frac{1}{\sin x}+\frac{1}{4} \tag{2}
\end{equation*}
$$

(c) Use the iterative formula

$$
x_{n+1}=\frac{1}{\sin x_{n}}+\frac{1}{4}, \quad x_{0}=1.25
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 4 decimal places.
(d) By considering the change of sign of $\mathrm{f}(x)$ in a suitable interval, verify that $\alpha=1.291$ correct to 3 decimal places.

June 10 Q3
11.

$$
\mathrm{f}(x)=x^{3}+2 x^{2}-3 x-11
$$

(a) Show that $\mathrm{f}(x)=0$ can be rearranged as

$$
x=\sqrt{\left(\frac{3 x+11}{x+2}\right)}, \quad x \neq-2 .
$$

The equation $\mathrm{f}(x)=0$ has one positive root α.
The iterative formula $x_{n+1}=\sqrt{\left(\frac{3 x_{n}+11}{x_{n}+2}\right)}$ is used to find an approximation to α.
(b) Taking $x_{1}=0$, find, to 3 decimal places, the values of x_{2}, x_{3} and x_{4}.
(c) Show that $\alpha=2.057$ correct to 3 decimal places.
12.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=(8-x) \ln x, \quad x>0
$$

The curve cuts the x-axis at the points A and B and has a maximum turning point at Q, as shown in Figure 1.
(a) Write down the coordinates of A and the coordinates of B.
(b) Find $\mathrm{f}^{\prime}(x)$
(c) Show that the x-coordinate of Q lies between 3.5 and 3.6
(d) Show that the x-coordinate of Q is the solution of

$$
\begin{equation*}
x=\frac{8}{1+\ln x} . \tag{3}
\end{equation*}
$$

To find an approximation for the x-coordinate of Q, the iteration formula

$$
x_{n+1}=\frac{8}{1+\ln x_{n}}
$$

is used.
(e) Taking $x_{0}=3.55$, find the values of x_{1}, x_{2} and x_{3}.

Give your answers to 3 decimal places.

Iterations
13.

$$
\begin{equation*}
\mathrm{f}(x)=2 \sin \left(x^{2}\right)+x-2, \quad 0 \leq x<2 \pi . \tag{2}
\end{equation*}
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between $x=0.75$ and $x=0.85$.

The equation $\mathrm{f}(x)=0$ can be written as $x=[\arcsin (1-0.5 x)]^{\frac{1}{2}}$.
(b) Use the iterative formula

$$
x_{n+1}=\left[\arcsin \left(1-0.5 x_{n}\right)\right]^{\frac{1}{2}}, \quad x_{0}=0.8
$$

to find the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(c) Show that $\alpha=0.80157$ is correct to 5 decimal places.

