Recurrence Relations 2 - Edexcel Past Exam Questions

1. A sequence x_1, x_2, x_3, \ldots is defined by

 $x_1 = 1$,

$$x_{n+1} = a x_n + 5, \qquad n \ge 1,$$

where *a* is a constant.

(a) Write down an expression for x_2 in terms of a.	(1)
(b) Show that $x_3 = a^2 + 5a + 5$.	(2)
Given that $x_3 = 41$	

- (c) find the possible values of a.(3)Jan 12 Q4
- **2.** A sequence of numbers a_1, a_2, a_3, \dots is defined by

$$a_1 = 3,$$

 $a_{n+1} = 2a_n - c, \qquad (n \ge 1)$

where *c* is a constant.

<i>(a)</i>	Write down an expression,	in terms of c , for a_2 .	(1)

(b) Show that $a_3 = 12 - 3c$. (2)

Given that
$$\sum_{i=1}^{4} a_i \ge 23$$
,

(c) find the range of values of c.

(4) June 12 Q5 3. A sequence u_1 , u_2 , u_3 , ..., satisfies

$$u_{n+1} = 2u_n - 1, n \ge 1.$$

Given that $u_2 = 9$,

- (a) find the value of u_3 and the value of u_4 , (2)
- (b) evaluate $\sum_{r=1}^{4} u_r$. (3) Jan 13 Q4
- 4. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = 4$$
,
 $a_{n+1} = k(a_n + 2)$, for $n \ge 1$

where k is a constant.

- (a) Find an expression for a_2 in terms of k.
- Given that $\sum_{i=1}^{3} a_i = 2$,
- (*b*) find the two possible values of *k*.
- 5. A sequence x_1, x_2, x_3, \dots is defined by

$$x_1 = 1,$$

 $x_{n+1} = (x_n)^2 - kx_n, \qquad n \ge 1,$

where *k* is a constant.

- (a) Find an expression for x_2 in terms of k. (1)
- (b) Show that $x_3 = 1 3k + 2k^2$. (2)
- Given also that $x_3 = 1$,
- (c) calculate the value of k. (3)
- (d) Hence find the value of $\sum_{n=1}^{100} x_n$. (3)

(1)

(6)

June 13 Q4

June 13(R) Q6

6. A sequence of numbers $a_1, a_2, a_3...$ is defined by

$$a_{n+1}=5a_n-3, \qquad n\geq 1$$

Given that $a_2 = 7$,

(a) find the value of
$$a_1$$
. (2)

- (b) Find the value of $\sum_{r=1}^{4} a_r$. (3) June 14 Q5
- 7. A sequence a_1, a_2, a_3, \dots is defined by

$$a_{n+1} = 4a_n - 3, \qquad n \ge 1$$

$$a_1 = k, \qquad \text{where } k \text{ is a positive integer.}$$
(a) Write down an expression for a_2 in terms of k . (1)
Given that $\sum_{r=1}^{3} a_r = 66$
(b) find the value of k . (4)
June 14(R) Q3

8. (i) A sequence U_1, U_2, U_3, \dots is defined by

$$U_{n+2} = 2U_{n+1} - U_n, \quad n \ge 1,$$

 $U_1 = 4 \text{ and } U_2 = 4.$

Find the value of

(a)
$$U_3$$
, (1)

(b)
$$\sum_{n=1}^{20} U_n$$
. (2)

(ii) Another sequence V_1 , V_2 , V_3 , ... is defined by

$$V_{n+2} = 2V_{n+1} - V_n, \quad n \ge 1,$$

$$V_1 = k$$
 and $V_2 = 2k$, where k is a constant.

(a) Find V_3 and V_4 in terms of k. (2)

Given that
$$\sum_{n=1}^{5} V_n = 165$$
,

(b) find the value of
$$k$$

(3) June 15 Q4

9. A sequence a_1, a_2, a_3, \ldots is defined by

$$a_1 = 4,$$

 $a_{n+1} = 5 - ka_n, \quad n \ge 1,$

where k is a constant.

(a) Write down expressions for a_2 and a_3 in terms of k. (2)

Find

(b)
$$\sum_{r=1}^{3} (1+a_r)$$
 in terms of k, giving your answer in its simplest form, (3)
(c) $\sum_{r=1}^{100} (a_r + ka_r)$ (1)

(c)
$$\sum_{r=1}^{100} (a_{r+1} + ka_r)$$
. (1)
June 16 Q6

10. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = 1$$
$$a_{n+1} = \frac{k(a_n + 1)}{a_n}, \qquad n \ge 1$$

where k is a positive constant.

(a) Write down expressions for a₂ and a₃ in terms of k, giving your answers in their simplest form.(3)

Given that
$$\sum_{r=1}^{3} a_r = 10$$

(*b*) find an exact value for *k*.

(3) June 17 Q3