

Sequences and Series 2 - Edexcel Past Exam Questions MARK SCHEME

Question number	Scheme	Marks	
(a)	Uses $360 \times \left(\frac{7}{8}\right)^{19}$, to obtain 28.5	M1, A1 (2)	
(b)	Uses $S = \frac{360(1 - (\frac{7}{8})^{20})}{1 - \frac{7}{8}}$, or $S = \frac{360((\frac{7}{8})^{20} - 1)}{\frac{7}{8} - 1}$ to obtain 2680	M1, A1 (2)	
(c)	Uses $S = \frac{360}{1 - \frac{7}{8}}$, to obtain 2880	M1, A1cao (2)	
		6	
Notes	 (a) M1: Correct use of formula with power = 19 A1: Accept 28.47, or 28.474 or indeed 28.47446075 (b) M1: Correct use of formula with n = 20 A1: Accept 2681, 2680.7, 2680.68 or 2680.679 or indeed 2680.678775 (N.B. 2680.67 or 2680.0 is A0) (c) M1: Correct use of formula A1: Accept 2880 only 		
Alternative method	Alternative to (a) Gives all 20 terms 315, 275.6(25), 241.17(1875), (1 st 3 accurate)	M1	
	All correct and last term as above A1: Accept 28.5, 28.47, or 28.474 or indeed 28.47446075	A1	
	Alternative to (b) Gives all 20 terms 315, 275.6(25), 241.17(1875), (1 st 3 accurate) and adds	M1	
	Sum correct A1: Accept 2680, 2681, 2680.7, 2680.68 or 2680.679 or indeed 2680.678775	A1	

Question	Scheme		
(a)	$(S_n =) a + ar + (ar^2) + + ar^{n-1}$ and $rS_n = ar + ar^2 + (ar^3) + ar^n$		
	$S_n - rS_n = a - ar^n$	M1	
	$S_n(1-r) = a(1-r^n)$		
	And so result $S_n = \frac{a(1-r^n)}{(1-r)}$ *	A1 (
(b)	Divides one term by other (either way) to give $r^2 =$ then square roots to give $r = 1.2$ Or: (<i>Method 2</i>) Finds geometric mean i.e 3.24 and divides one term by 3.24 or 3.24 by one term	M1	
	$r^2 = \frac{1.944}{5.4}$, $r = 0.6$ (ignore – 0.6) $r = 0.6$ (ignore – 0.6)	A1 (
(c)	Uses $5.4 \div r^2$ or $1.944 \div r^4$, to give $a = a = 15$	M1, A1ft	
(d)	Uses $S = \frac{15}{1 - 0.6}$, to obtain 37.5	M1A1 ,A1	
		11 marks	
Special Case	corresponding ar^p or ar^{p+1} in second series. Must be n and not a number. Reference made to space or dots to indicate missing terms M1: Subtracts series for rS from series for S (or other way round) to give RHS $=\pm(a-ar^p)$ been obtained by following a pattern. If wrong power stated on line 1 M0 here. (Ignore LHS dM1: Factorises both sides correctly—must follow from a previous M1 (It is possible to obtain M1M0M1A0) A1: completes the proof with no errors seen. First line absolutely correct, omission of second line, third and fourth lines complete the proof with no errors seen ext sheet of common errors. Refer any attempts involving sigma notation, or any proofs by induction to team leader. Also attempts which begin with the answer and work backwards. (b) M1: Deduces r^2 by dividing either term by other and attempts square root A1: any correct equivalent for r e.g. $3/5$. Answer only is $2/2$. (Method 2) Those who find fourth term must use \sqrt{ab} and not $\frac{1}{2}(a+b)$ then must use it in a given term to obtain $r =$ (c) M1: May be done in two steps or more e.g. $5.4 + r$ then divided by r again A1ft: follow through their value of r . Just $a = 15$ with no wrong working implies M1A1 (d) M1: States sum to infinity formula with values of a and r found earlier, provided $ r < 1$. This may hav)M0M0M0A0 M0M1M1A0 o	
Common	A1 : uses 15 and 0.6 (or 3/5) (This is not a ft mark) A1: 37.5 or exact equivalent (i) Fraction inverted in (b) $r^2 = \frac{5.4}{1.944}$ and $r = 1\frac{2}{3}$, then correct ft gives M1A0 M1 A1ft M0A0A0 i.e. 3/7 (ii) Uses $r = 0.36$: (b) M0A0 (c) M1A1ft (d) M1A0A0 i.e. 3/7 (iii) Uses $ar^2 = 5.4$, $ar^5 = 1.944$ Likely to have (b) M1A1 (c) M0A0 (d) M1A0A0 i.e. 3/7		

Question Number	Scheme	Marks
(a)	$\{r = \} \frac{2}{3}$ $\{p = \} 8$	B1
(b)	{p =} 8	B1 cao
(c)	$\{P = \} 8$ $\{S_{15} = \} \frac{18(1 - (\frac{2}{3})^{15})}{1 - \frac{2}{3}}$ $\{S_{15} = 53.87668\} \implies S_{15} = \text{awrt } 53.877$	(1) M1
	${S_{15} = 53.87668} \Rightarrow S_{15} = awrt 53.877$	A1 (2) [4]
	Notes for Question	[1]
(a)	B1: Accept $\frac{12}{18}$, 0.6 or 0.6 recurring, or even 0.667 (3sf) but not 0.6 or 0.67	
(b)	B1: accept 8 only	
(c)	M1: Applies this formula $S_{15} = \frac{18(1 - (\text{their } r)^{15})}{1 - (\text{their } r)}$, can be implied by their answer. For this mark	
	they may use any value for r except $r = 1$ or $r = 0$ (even $3/2$ or -6 may be used) A1: Answers which round to 53.877	
Alternative method for (c)	M1: (Adding terms is an unlikely method for this question) Need to see 15 terms listed as 18+12+0.06165877 or can be implied by correct answer	
	A1: awrt 53.877 Answer only: 53.9 is M0A0 with no working, but 53.877 with no working is M1A1	

Question Number	Scheme	Marks	
(a)	$a = 4p$, $ar = (3p+15)$ and $ar^2 = 5p + 20$	B1	
	(So $r = 1$) $\frac{5p+20}{3p+15} = \frac{3p+15}{4p}$ or $4p(5p+20) = (3p+15)^2$ or equivalent	M1	
	See $(3p+15)^2 = 9p^2 + 90p + 225$	M1	
	$20p^2 + 80p = 9p^2 + 90p + 225 \rightarrow 11p^2 - 10p - 225 = 0 $	A1 *	
			(4)
(b)	(p-5)(11p+45) so $p=$	M1	
	p = 5 only (after rejecting - 45/11) N.B. Special case $p = 5$ can be verified in (b) (1 mark only) $11 \times 5^2 - 10 \times 5 - 225 = 275 - 50 - 225 = 0$ M1A0	A1	
	11×5 -10×5-225 = 2/5-50-225=0 MIA0		(2)
(c)	$\frac{3\times 5+15}{4\times 5}$ or $\frac{5\times 5+20}{3\times 5+15}$	M1	
	$r = \frac{3}{2}$	A1	
			(2)
(d)	$S_{10} = \frac{20\left(1 - \left(\frac{3}{2}\right)^{10}\right)}{\left(1 - \frac{3}{2}\right)}$	M1A1ft	
	(= 2266.601568) = 2267	A1	
		Tota	(3) l 11

	Notes for Question
(a)	B1: Correct statement (needs all three terms)— this may be omitted and implied by correct statement in p only as candidates may use geometric mean, or may use ratio of terms being equal and give a correct line 2 without line 1. (This would earn the B1M1 immediately) M1: Valid Attempt to eliminate a and r and to obtain equation in p only
	M1: Correct expansion of $(3p+15)^2 = 9p^2 + 90p + 225$
	A1cso: No incorrect work seen. The printed answer is obtained.
	NB Those who show $p = 5$ in part (a) obtain no credit for this
(b)	M1: Attempt to solve quadratic by usual methods (factorisation, completion of square or formula) Must appear in part (b) – not part (a)
	A1: 5 only and -45/11 should be seen and rejected or $(11p + 45)$ seen and statement $p > 0$
(c)	M1: Substitutes $p = 5$ completely and attempt ratio (correct way up)
. ,	A1: 1.5 or any equivalent
(d)	M1: Use of correct formula with $n = 10 a$ and/or r may still be in terms of p
	A1ft: Correct expression ft on their r only – must have $a = 20$ and power = 10 here
	A1 2267 (accept awrt 2267)


Number	Sc	heme	Marks
(a)	20 160	M1: Use of a correct S_{∞} formula	
	$S_{\infty} = \frac{20}{1 - \frac{7}{8}}$; = 160	A1: 160	M1A1
	Accept correct	answer only (160)	
			[2]
(b)	20(1 (7)12)	M1: Use of a correct S_n formula with $n = 12$	
	$S_{12} = \frac{20(1-(\frac{7}{8})^{12})}{1-\frac{7}{2}}$; = 127.77324	(condone missing brackets around 7/8)	M1A1
	$1 - \frac{7}{8}$	A1: awrt 127.8	
	T & I in (b) requires all 12 terms to be calc	ulated correctly for M1 and A1 for awrt 127.8	
			[2
(c)	200 (7) %	Applies S_N (GP only) with $a = 20$, $r = \frac{7}{8}$ and	
	$160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{8}} < 0.5$	"uses" 0.5 and their S_{∞} at any point in their	M1
	1 - 4	working. (condone missing brackets around $7/8$)(Allow =, <, >, \geq , \leq) but see note below.	
	$(7)^N$ $(7)^N$ (0.5)	Attempt to isolate $+160\left(\frac{7}{8}\right)^N$ or $+\left(\frac{7}{8}\right)^N$ oe	
	$160\left(\frac{7}{8}\right)^{N} < (0.5) \text{ or } \left(\frac{7}{8}\right)^{N} < \left(\frac{0.5}{160}\right)$	(Allow $=$, $<$, $>$, \ge , \le) but see note below.	dM1
	(6) (100)	Dependent on the previous M1	
		Uses the power law of logarithms or takes logs	
		base 0.875 correctly to obtain an equation or an inequality of the form	
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{\text{their }S_{\infty}}\right)$	M1
	(8) (160)	or	IVII
		$N > \log_{0.875} \left(\frac{0.5}{\text{their } S_{\infty}} \right)$	
		(Allow $=$, $<$, $>$, \ge , \le) but see note below.	
	$N > \frac{\log(\frac{0.5}{160})}{\log(\frac{7}{8})} = 43.19823 \Rightarrow N = 44$	$N = 44$ (Allow $N \ge 44$ but not $N > 44$	Al cso
	Some candidates do not realise that the direc	e in a candidate's working loses the final mark. tion of the inequality is reversed in the final line full marks for using =, as long as no incorrect	
	working seen.		
	working seen.		
		provement Method in (c):	
	Trial & Im	provement Method in (c): or S_N with at least one value for $N \ge 40$	
	Trial & Imparts 1^{st} M1: Attempts $160 - S_N$ 2^{nd} M1: Attempts 160	or S_N with at least one value for $N > 40$ $0 - S_N$ or S_N with $N = 43$ or $N = 44$	Total 8
	1 st M1: Attempts 160 – S _N 2 nd M1: Attempts 160 – S 3 rd M1: For evidence of examining 160 – S	or S_N with at least one value for $N > 40$ $0 - S_N$ or S_N with $N = 43$ or $N = 44$ S_N or S_N for both $N = 43$ and $N = 44$ with both	Total 8
	1 st M1: Attempts 160 – S _N 2 nd M1: Attempts 160 3 rd M1: For evidence of examining 160 – S	or S_N with at least one value for $N > 40$ $0 - S_N$ or S_N with $N = 43$ or $N = 44$ S_N or S_N for both $N = 43$ and $N = 44$ with both correct to 2 DP	Total 8
	$Trial \& Im$ $1^{st} M1$: Attempts $160 - S_N$ $2^{nd} M1$: Attempts 160 $3^{rd} M1$: For evidence of examining $160 - S_N$ Eg: $160 - S_{43} = aw$	or S_N with at least one value for $N > 40$ $0 - S_N$ or S_N with $N = 43$ or $N = 44$ S_N or S_N for both $N = 43$ and $N = 44$ with both correct to 2 DP art 0.51 and $160 - S_{44} = \text{awrt } 0.45$	Total 8
	$Trial \& Im$ $1^{st} M1$: Attempts $160 - S_N$ $2^{nd} M1$: Attempts 160 $3^{rd} M1$: For evidence of examining $160 - S_N$ Eg: $160 - S_{43} = aw$ or $S_{43} = aw$	or S_N with at least one value for $N > 40$ $0 - S_N$ or S_N with $N = 43$ or $N = 44$ S_N or S_N for both $N = 43$ and $N = 44$ with both correct to 2 DP	[4 Total 8

Question Number	Sch	Scheme	
	S _w	= 6 <i>a</i>	
	$\frac{a}{1-r} = 6a$	Either $\frac{a}{1-r} = 6a$ or $\frac{6a}{1-r} = a$ or $\frac{6}{1-r} = 1$	M1
(a)	$\{\Rightarrow 1 = 6(1-r) \Rightarrow\} r = \frac{5}{6}*$	eso	A1*
	Allow verification e.g. $\frac{a}{1-r} = 6$	$a \Rightarrow \frac{a}{1 - \frac{5}{6}} = 6a \Rightarrow \frac{a}{\frac{1}{6}} = 6a \Rightarrow 6a = 6a$	
			[2]
(b)	$\left\{ T_4 = ar^3 = 62.5 \Rightarrow \right\} a \left(\frac{5}{6} \right)^3 = 62.5$	$a\left(\frac{5}{6}\right)^3 = 62.5$ (Correct statement using the 4 th term. Do not accept $a\left(\frac{5}{6}\right)^4 = 62.5$	M1
)	
	⇒ a = 108	108	A1
			[2]
	$S_{\infty} = 6 \text{ (their } a \text{) or } \frac{\text{their } a}{1 - \frac{5}{6}} \{ = 648 \}$	Correct method to find S_{∞}	M1
(c)	${S_{30} =} \frac{108(1 - (\frac{5}{6})^{30})}{1 - \frac{5}{4}} = 645.2701573}$	M1: $S_{30} = \frac{\left(\text{their } a\right)\left(1 - \left(\frac{5}{6}\right)^{30}\right)}{1 - \left(\frac{5}{6}\right)}$ (Condone invisible brackets around 5/6)	M1 A1ft
	$1-\frac{2}{6}$	A1ft: Correct follow through expression (follow through their a). Do not condone invisible brackets around 5/6 unless their evaluation or final answer implies they were intended.	
	${S_{\infty} - S_{30}} = 2.72984$	awrt 2.73	A1
			[4]
			Total 8
(c)	Alternative: Difference = $\frac{ar^{30}}{1-r} = \frac{108\left(\frac{5}{6}\right)^{30}}{1-\frac{5}{6}} = 2.72984$. M1M1: For an attempt to apply $\frac{ar^{30}}{1-r}$. A1ft: $\frac{(their\ a) \times r^{30}}{1-r}$ with their ft a .		
	A1t: $\frac{1-r}{1-r}$ With their it a . A1: awrt 2.73		

Question	Scheme	Marks
Number		
(i)	Mark (a) and (b) together	
(a)	$a + ar = 34$ or $\frac{a(1-r^2)}{(1-r)} = 34$ or $\frac{a(r^2-1)}{(r-1)} = 34$; $\frac{a}{1-r} = 162$	B1; B1
(Way 1)	Eliminate a to give $(1+r)(1-r) = \frac{17}{81}$ or $1-r^2 = \frac{34}{162}$ (not a cubic)	aM1
	(and so $r^2 = \frac{64}{81}$ and) $r = \frac{8}{9}$ only	aA1 (4)
(b)	Substitute their $r = \frac{8}{0}$ (0 < r < 1) to give $a =$	bM1
	a = 18	bA1
		(2)
(Way 2) Part (b) first	Eliminate r to give $\frac{34-a}{a} = 1 - \frac{a}{162}$	ьм1
	gives $a = 18$ or 306 and rejects 306 to give $a = 18$	bA1
Then part (a) again	Substitute $a = 18$ to give $r =$	aM1
	$r=\frac{8}{9}$	aA1
(ii)	$\frac{42(1-\frac{6}{7}^n)}{1-\frac{6}{7}} > 290$ (For trial and improvement approach see notes below)	M1
	to obtain So $\left(\frac{6}{7}\right)^n < \left(\frac{4}{294}\right)$ or equivalent e.g. $\left(\frac{7}{6}\right)^n > \left(\frac{294}{4}\right)$ or $\left(\frac{6}{7}\right)^n < \left(\frac{2}{147}\right)$	A1
	So $n > \frac{\log''(\frac{4}{294})''}{\log(\frac{6}{7})}$ or $\log_{\frac{6}{7}}''(\frac{4}{294})''$ or equivalent but must be log of positive quantity	M1
	(i.e. $n \ge 27.9$) so $n = 28$	A1 (4)

Notes

(i) (a) B1: Writes a correct equation connecting a and r and 34 (allow equivalent equations – may be implied)

B1: Writes a correct equation connecting a and r and 162 (allow equivalent equation - may be implied)

Way 1: aM1: Eliminates a correctly for these two equations to give $(1+r)(1-r) = \frac{17}{81}$ or $(1+r)(1-r) = \frac{34}{162}$ or equivalent –

not a cubic – should have factorized (1 - r) to give a correct quadratic

aA1: Correct value for r. Accept 0.8 recurring or 8/9 (not 0.889) Must only have positive value.

bM1: Substitutes their r (0 < r < 1) into a correct formula to give value for a. Can be implied by a = 18

bA1: must be 18 (not answers which round to 18)

Way 2: Finds a first - B1, B1: As before then award the (b) M and A marks before the (a) M and A marks

bM1: Eliminates r correctly to give $\frac{34-a}{a} = 1 - \frac{a}{162}$ or $a^2 - 324a + 5508 = 0$ or equivalent

bA1: Correct value for a so a = 18 only. (Only award after 306 has been rejected)

aM1: Substitutes their 18 to give r =

aA1: $r = \frac{8}{9}$ only

(ii) M1: Allow n or n-1 and any symbols from ">", "<", or "=" etc. Al: Must be power n (not n-1) with any symbol

M1: Uses logs correctly on $(\frac{6}{7})^n$ or $(\frac{7}{6})^n$ not on (36)" to get as far as n Allow any symbol

A1: n = 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the negative

 $\log(\frac{6}{7})$ or any contradictory statements must be penalised here) Those with equals throughout may gain this mark if they

follow 27.9 by n=28. Just n=28 without mention of 27.9 is only allowed following correct inequality work.

Special case: Trial and improvement: Gives n = 28 as S = awrt 290.1 (M1A1) and when n = 27 S = (awrt) 289 so n = 28 (M1A1)

n = 28 with no working is M1A0M0A0 and insufficient accuracy is M1A0M1A0

Uses nth term instead of sum of n terms - over simplified - do not treat as misread - award 0/4


Question Number	Scheme	Marks
	$r = \frac{3}{4}, \ S_4 = 175$	
(a) Way 1	$\frac{a\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-\frac{3}{4}^{4}\right)}{1-\frac{3}{4}} \text{ or } \frac{a\left(1-0.75^{4}\right)}{1-0.75} \qquad \text{Substituting } r=\frac{3}{4} \text{ or } 0.75 \text{ and } n=\frac{3}{4} \text{ or } 0.75 \text$	= 4 M1
	$175 = \frac{a\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} \implies a = \frac{175\left(1 - \frac{3}{4}\right)}{\left(1 - \left(\frac{3}{4}\right)^4\right)} \left\{ \Rightarrow a = \frac{\left(\frac{175}{4}\right)}{\left(\frac{175}{256}\right)} \Rightarrow \right\} \underline{a = 64} * $ Correct pro	
(a) Way 2	$a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^3$ $a + a\left(\frac{3}{4}\right) + a\left(\frac{3}{4}\right)^2 + a\left(\frac{3}{4}\right)^2$) ³ M1
	$\frac{175}{64}a = 175 \left(\Rightarrow a = \frac{175}{\left(\frac{175}{64}\right)} \right) \Rightarrow \underline{a = 64} *$ or 2.734375 a =175 $\Rightarrow \underline{a = 64}$	oof A1*
		[2]
(a) Way 3	$\left\{S_4 = \right\} \frac{64\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} \text{ or } \frac{64\left(1 - \frac{3}{4}\right)}{1 - \frac{3}{4}} \text{ or } \frac{64\left(1 - 0.75^4\right)}{1 - 0.75} $ Applying the formula for with $r = \frac{3}{4}$, $n = 4$ and a as 6	S _n
	= 175 so $a = 64*$ Obtains 175 with no errors seen and conclude $a = 64$	A I T
(b)	$\{S_{\infty}\}=\frac{64}{\left(1-\frac{3}{4}\right)}; = 256$ $S_{\infty}=\frac{(\text{their }a)}{1-\frac{3}{4}} \text{ or } \frac{64}{1-\frac{3}{4}}$	4 3 4 M1;
	(4)	56 Alcao
(c)	Writes down either "64" $\left(\frac{3}{4}\right)^8$ or awrt 6.4 $\left\{D = T_9 - T_{10} = \right\} 64 \left(\frac{3}{4}\right)^8 - 64 \left(\frac{3}{4}\right)^9$ or awrt 4.8, using $a = 64$ or their	M1
	A correct expression for the different (i.e. $\pm (T_9 - T_{10})$) using $a = 64$ or their	43.54
	$\left\{ = 64 \left(\frac{3}{4} \right)^8 \left(\frac{1}{4} \right) = 1.6018066 \right\} = \underline{1.602} (3 dp) $ 1.602 or -1.60	02 A1 cao
		[3] 7

		Question Notes		
(a)		Allow invisible brackets around fractions throughout all parts of this question.		
	M1	There are three possible methods as described above.		
	Al	Note that this is a "show that" question with a printed answer.		
		In Way 1 this mark usually requires $a = p/q$ where p and q may be unsimplified brackets from the		
		formula (or could be $11200/175$ for example) as an intermediate step before the conclusion $a = 64$.		
		Exceptions include $a = 175/4 * 256/175$ i.e. multiplication by reciprocal rather than division or 175		
		= $175a/64$ followed by the obvious $a = 64$ These also get A1 In "reverse" methods such as Way 3 we need a conclusion "so $a = 64$ " or some implication that		
		their argument is reversible. Also a conclusion can be implied from a preamble, eg: "If I assume a		
		= 64 then find $S=175$ as given this implies $a=64$ as required"		
		This is a show that question and there should be no loss of accuracy.		
		In all the methods if decimals are used there should not be rounding.		
		If 0.68359375 appears this is correct. If it is rounded it would not give the exact answer.		
		64(1-0.31640625) or 43.75 are each correct - if they are rounded then treat this as incorrect		
		e.g. Way 3: " $43.75/0.25 = 175$ so $a = 64$ is A1" but " $43/0.25 = 175$ so $a = 64$ is A0" and " $44/0.25 = 175$ so $a = 64$ is A0"		
		Yet another variant on Way 3: take a=64 then find the next 3 terms as 48, 36, 27 then		
		add 64+48+36+27 to get 175. Again need conclusion that $a = 64$ or some implication that their		
		argument is reversible. Otherwise M1 A0		
		64 (their a found in part (a))		
(b)	M1	$S_{\infty} = \frac{64}{1 - \frac{3}{4}} \text{ or } \frac{\text{(their } a \text{ found in part } (a)\text{)}}{1 - \frac{3}{4}}$		
	Al	256 cao		
(c)	NB	Using Sum of 10 terms minus Sum of 9 terms is NOT a misread Scores M0M0A0		
	М1	Can be implied. Writes down either $64\left(\frac{3}{4}\right)^8$ or $64\left(\frac{3}{4}\right)^9$,		
		using $a = 64$ (or their a found in part (a)).		
	Note	Ignore candidate's labelling of terms.		
	Notes	$(4)^{8}$ (407226562) $(4)^{9}$ (4005410022)		
	Note	$64\left(\frac{3}{4}\right)^8 = 6.407226563$ and $64\left(\frac{3}{4}\right)^9 = 4.805419922$		
	dM1	This is dependent on previous M mark and can be implied. Either		
		$64\left(\frac{3}{4}\right)^8 - 64\left(\frac{3}{4}\right)^9$ or $64\left(\frac{3}{4}\right)^9 - 64\left(\frac{3}{4}\right)^8$ or awrt 6.4 – awrt 4.8, using $a = 64$ (or their a from part (a))		
		(4) (4) (4)		
	Note	1 st M1 and 2 nd M1 can be implied by the value of their		
		difference = "their a found in part (a)" $\times \frac{3^8}{4^9} \approx \frac{\text{"their a found in part (a)"}}{40}$		
		4 40		
	Note	Either $64\left(\frac{3}{4}\right)^9 - 64\left(\frac{3}{4}\right)^{10}$ or $64\left(\frac{3}{4}\right)^{10} - 64\left(\frac{3}{4}\right)^9$ is 1^{st} M1, 2^{nd} M0.		
	Al	1.602 or -1.602 cao (This answer with no working is M1M1A1) But 1.6 with no working is		
		M0M0A0		
		(1) 1 (2)8		
	Note	$\left\{D = \frac{1}{4}T_9 \Rightarrow \right\} D = \frac{1}{4}(64)\left(\frac{3}{4}\right)^6 \text{ is } 1^{st} \text{ M1, } 2^{nd} \text{ M1}$		
	Special	. ,		
	Special case	Obtains awrt 6.4, then obtains awrt 4.8 but rounds to 6 – 5 when subtracting – award M1M1A0		

Question Number	Scheme	Marks	
(a)	$a = 7k - 5$, $ar = 5k - 7$ and $ar^2 = 2k + 10$	B1	
	(So $r = 1$) $\frac{5k-7}{7k-5} = \frac{2k+10}{5k-7}$ or $(7k-5)(2k+10) = (5k-7)^2$ or equivalent	M1	
	See $(5k-7)^2 = 25k^2 - 70k + 49$	M1	
	$14k^2 + 60k - 50 = 25k^2 - 70k + 49 \rightarrow 11k^2 - 130k + 99 = 0 *$	A1cso * (4)
(b)	(k-11)(11k-9) so $k=$	M1	
	k = 9/11 only* (after rejecting 11) N.B. Special case $k = 9/11$ can be verified in (b) (1 mark only)	A1*	
	$11 \times \left(\frac{9}{11}\right)^2 - 130 \times \left(\frac{9}{11}\right) + 99 = \frac{81}{11} - \frac{1170}{11} + \frac{1089}{11} = 0$ MIA0	(2)
(c)	$a = \frac{8}{11}$	B1	
	$\frac{5 \times \frac{9}{11} - 7}{7 \times \frac{9}{11} - 5}$ or $\frac{2 \times \frac{9}{11} + 10}{5 \times \frac{9}{11} - 7}$ so $r = -4$	В1	
	(i) Fourth term = $ar^3 = -\frac{512}{11}$	M1A1	
	(ii) $S_{10} = \frac{a(1-r^{10})}{(1-r)} = \frac{\frac{8}{11}(1-(-4)^{10})}{(1-(-4))} = -152520$	M1A1	
		(6) [12	

Notes

(a) Mark parts (a) and (b) together

- B1: Correct statement (needs all three terms)— this may be omitted and implied by correct statement in k only, as candidates may use geometric mean, or may use ratio of terms being equal and give a correct line 2 without line 1. (This would earn the B1M1 immediately)
- M1: Valid Attempt to eliminate a and r and to obtain equation in k only
- M1: Correct expansion of $(5k-7)^2 = 25k^2 70k + 49$ may have four terms $(5k-7)^2 = 25k^2 35k 35k + 49$

Alcso: No incorrect work seen. The printed answer is obtained including "=0".

- (b) M1: Attempt to solve quadratic by usual methods (factorisation, completion of square or formula see notes at start of mark scheme) or see 9/11 substituted and given as "=0" for M1A0
 - A1*: 9/11 only and 11 should be seen and rejected. Accept 9/11 underlined or k= 9/11 written on following line.

Alternatively (k-11) may be seen in the factorisation and a statement 'k not integer' given with k=9/11 stated.

- (c) Mark parts (i) and (ii) together
- B1: $a = \frac{8}{11}$ or any equivalent (If not stated explicitly or used in formula may be implied by correct answer to (ii))
- B1: Substitutes k = 9/11 completely and obtain r = -4 (If not stated explicitly, may be implied by correct answer to (i) or (ii))
- (i) M1: Use of correct formula with n=4 a and/or r may still be in terms of k or uses $(2k+10)\times r$. May assume r=k.
- A1: Correct exact answer

 (ii) M1: Use of correct formula with n = 10 a and/or r may still be in terms of k May assume r = k A1: -152520 cao
- NB Correct formula with negative sign in numerator followed by the incorrect $(8/11)(1+4^{-10})/(1-(-4))$ usually found equal to 152520.2909 with no negative sign can be allowed M1A0 but if the incorrect numerical expression appears on its own with no formula then M0A0

Listing terms can get: B1 (first term) B1 M1A1 (implied by correct 4th term) M1A1 (implied by -152520)