

Solving Differential Equations 2 - Edexcel Past Exam Questions MARK SCHEME

Question	I		<u> </u>
Question Number	Scheme		Marks
(a)	1 = A(5 - P) + BP	Can be implied.	Ml
	$A = \frac{1}{5}, B = \frac{1}{5}$	Either one.	Al
	giving $\frac{\frac{1}{3}}{P} + \frac{\frac{1}{3}}{(5-P)}$	See notes.	Al cao, aef
			[3]
(b)	$\int \frac{1}{P(5-P)} dP = \int \frac{1}{15} dt$		B1
	$\frac{1}{5} \ln P - \frac{1}{5} \ln(5 - P) = \frac{1}{15} t \ (+c)$		Ml*
	1 3 3 13		Alft
	$\{t = 0, P = 1 \Rightarrow\}$ $\frac{1}{5}\ln 1 - \frac{1}{5}\ln(4) = 0 + c$ $\{\Rightarrow c = -\frac{1}{5}\ln 4\}$		dM1*
	1 (P) 1 1	Using any of the subtraction (or addition)	
	eg: $\frac{1}{5}\ln\left(\frac{P}{5-P}\right) = \frac{1}{15}t - \frac{1}{5}\ln 4$	laws for logarithms CORRECTLY	dM1*
	$ \ln\left(\frac{4P}{5-P}\right) = \frac{1}{3}t $	Conduction	
	eg: $\frac{4P}{5-P} = e^{\frac{1}{7}\epsilon}$ or eg: $\frac{5-P}{4P} = e^{-\frac{1}{7}\epsilon}$	Eliminate ln's correctly.	dMl*
	gives $4P = 5e^{\frac{1}{7}t} - Pe^{\frac{1}{7}t} \Rightarrow P(4 + e^{\frac{1}{7}t}) = 5e^{\frac{1}{7}t}$		
	$P = \frac{5e^{\frac{1}{4}t}}{(4 + e^{\frac{1}{4}t})} \left\{ \frac{(+e^{\frac{1}{4}t})}{(\div e^{\frac{1}{2}t})} \right\}$	Make P the subject.	dM1*
	$P = \frac{5}{(1 + 4e^{-\frac{1}{2}t})}$ or $P = \frac{25}{(5 + 20e^{-\frac{1}{2}t})}$ etc.		A1
	(2.46)		[8]
(e)	$1 + 4e^{-f} > 1 \implies P < 5$. So population cannot exceed 5000.		B1
			[1] 12
	Alternative method for part (b)		
	1 1 1		

BIM1*A1: as before for
$$\frac{1}{5} \ln P - \frac{1}{5} \ln(5 - P) = \frac{1}{15}t \ (+c)$$

Award 3rd M1 for $\ln \left(\frac{P}{5 - P}\right) = \frac{1}{3}t + c$

Award 4th M1 for $\frac{P}{5 - P} = Ae^{\frac{1}{4}t}$

Award 2nd M1 for $t = 0, P = 1 \Rightarrow \frac{1}{5 - 1} = Ae^0 \ \left\{\Rightarrow A = \frac{1}{4}\right\}$
 $\frac{P}{5 - P} = \frac{1}{4}e^{\frac{1}{4}t}$

then award the final M1A1 in the same way.

Question Number		Scheme	Marks	
	$\int y dy = \int \frac{3}{\cos^2 x} dx$ $= \int 3 \sec^2 x dx$	Can be implied. Ignore integral signs	B1	
	$\frac{1}{2}y^2 = 3\tan x (+C)$	Γ	M1 A1	
	$y = 2, x = \frac{\pi}{4}$ $\frac{1}{2}2^2 = 3\tan\frac{\pi}{4} + C$ Leading to $C = -1$		M1	
	$\frac{1}{2}y^2 = 3\tan x - 1$	or equivalent	A1	(5) [5]

Question Number	Scheme		Marks
	$\left\{ \frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{(3-\theta)}{125} \right\} \Rightarrow \int \frac{1}{3-\theta} \mathrm{d}\theta = \int \frac{1}{125} \mathrm{d}t \text{or } \int \frac{1}{3-\theta} \mathrm{d}\theta = \int \frac{1}{125} \mathrm{d}t \mathrm{d}\theta = \int \frac{1}{3-\theta} \mathrm{d}\theta = \int \frac{1}{3-$	-	B1
	$-\ln(\theta - 3) = \frac{1}{125}t \ \{+c\} \ \text{or} \ -\ln(3 - \theta) = \frac{1}{125}t $	$\begin{cases} -t & \{+c\} \end{cases}$ See notes.	M1 A1
	$\ln(\theta - 3) = -\frac{1}{125}t + c$ $\theta - 3 = e^{-\frac{1}{125}t + c} \text{ or } e^{-\frac{1}{125}t}e^{c}$	Correct completion to $\theta = Ae^{-0.008t} + 3$.	Δ1
(b)	$\theta = Ae^{-0.008t} + 3$ * $\{t = 0, \theta = 16 \Rightarrow\} 16 = Ae^{-0.008(0)} + 3; \Rightarrow \underline{A} = 13$	See notes.	[4] M1; A1
(0)	(* 1,0 11), 15 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Substitutes $\theta = 10$ into an equation	WII, AI
	$10 = 13e^{-0.008t} + 3$	of the form $\theta = Ae^{-0.008t} + 3$,	M1
	$e^{-0.008t} = \frac{7}{13}$ \Rightarrow $-0.008t = \ln\left(\frac{7}{13}\right)$	or equivalent. See notes. Correct algebra to $-0.008t = \ln k$, where k is a positive value. See notes.	M1
	$\left\{ t = \frac{\ln\left(\frac{7}{13}\right)}{\left(-0.008\right)} \right\} = 77.3799 = 77 \text{ (nearest minute)}$	awrt 77	A1
			[5] 9

(b)

M1: (B1 on epen) Substitutes $\theta = 16$, t = 0, into either their equation containing an unknown constant or the printed

equation. Note: You can imply this method mark.

A1: (M1 on epen) A = 13. Note: $\theta = 13e^{-0.008} + 3$ without any working implies the first two marks,

M1: Substitutes θ = 10 into an equation of the form θ = Ae^{-0.006} + 3, or equivalent.

where A is a positive or negative numerical value and A can be equal to 1 or -1.

M1: Uses correct algebra to rearrange their equation into the form $-0.008t = \ln k$, where k is a positive numerical value.

Al: awrt 77 or awrt 1 hour 17 minutes.

Alternative Method 1 for part (b)

$$\int \frac{1}{3-\theta} d\theta = \int \frac{1}{125} dt \implies -\ln(\theta-3) = \frac{1}{125}t + \epsilon$$

$$\{t = 0, \theta = 16 \Rightarrow\} \begin{cases} -\ln(16 - 3) = \frac{1}{125}(0) + c \\ \Rightarrow c = -\ln 13 \end{cases}$$
MI: Substitutes $t = 0, \theta = 1$
into $-\ln(\theta - 3) = \frac{1}{125}t + c$

$$-\ln(\theta - 3) = \frac{1}{125}t - \ln 13$$
 or $\ln(\theta - 3) = -\frac{1}{125}t + \ln 13$

$$-\ln(10-3) = \frac{1}{125}t - \ln 13$$

$$\ln 13 - \ln 7 = \frac{1}{125}t$$

t = 77.3799... = 77(nearest minute)

Alternative Method 2 for part (b)

$$\int \frac{1}{3-\theta} d\theta = \int \frac{1}{125} dt \implies -\ln|3-\theta| = \frac{1}{125}t + c$$

$$\{t = 0, \theta = 16 \Rightarrow\}$$
 $-\ln|3 - 16| = \frac{1}{125}(0) + c$
 $\Rightarrow c = -\ln 13$

$$-\ln|3 - \theta| = \frac{1}{125}t - \ln 13$$
 or $\ln|3 - \theta| = -\frac{1}{125}t + \ln 13$

$$-\ln(3-10) = \frac{1}{125}t - \ln 13$$

$$\ln 13 - \ln 7 = \frac{1}{125}t$$

t = 77.3799... = 77(nearest minute)

M1: Substitutes $t = 0, \theta = 16$,

$$into - ln(\theta - 3) = \frac{1}{125}t + c$$

Al:
$$c = -\ln 13$$

M1: Substitutes
$$\theta = 10$$
 into an equation of the

form
$$\pm \lambda \ln(\theta - 3) = \pm \frac{1}{125}t \pm \mu$$

where λ , μ are numerical values.

M1: Uses correct algebra to rearrange their equation into the form $\pm 0.008t = \ln C - \ln D$, where C, D are positive numerical values.

Al: awrt 77.

M1: Substitutes $t = 0, \theta = 16$,

$$into - ln(3 - \theta) = \frac{1}{125}t + c$$

Al:
$$c = -\ln 13$$

M1: Substitutes
$$\theta = 10$$
 into an equation of the

form
$$\pm \lambda \ln(3-\theta) = \pm \frac{1}{125}t \pm \mu$$

where λ , μ are numerical values.

M1: Uses correct algebra to rearrange their equation into the form $\pm 0.008t = \ln C - \ln D$,

where C, D are positive numerical values.

Al: awrt 77.

Alternative Method 3 for part (b)

$$\int_{16}^{10} \frac{1}{3 - \theta} d\theta = \int_{0}^{t} \frac{1}{125} dt$$
$$= \left[-\ln|3 - \theta| \right]_{16}^{10} = \left[\frac{1}{125} t \right]_{0}^{t}$$

$$-\ln 7 - -\ln 13 = \frac{1}{125}t$$

$$t = 77.3799... = 77$$
(nearest minute)

MlAl: h13

M1: Substitutes limit of $\theta = 10$ correctly. M1: Uses correct algebra to rearrange their

own equation into the form

 $\pm 0.008t = \ln C - \ln D$,

where C, D are positive numerical values.

Al: awrt 77.

Alternative Method 4 for part (b)

$$\{\theta = 16 \Longrightarrow\}$$
 $16 = Ae^{-0.008c} + 3$

$$\{\theta = 10 \Longrightarrow\}$$
 $10 = Ae^{-0.006z} + 3$

$$-0.008t = \ln\left(\frac{13}{A}\right) \text{ or } -0.008t = \ln\left(\frac{7}{A}\right)$$

$$t_{(1)} = \frac{\ln\left(\frac{13}{A}\right)}{-0.008}$$
 and $t_{(2)} = \frac{\ln\left(\frac{7}{A}\right)}{-0.008}$

$$t = t_{(1)} - t_{(2)} = \frac{\ln\left(\frac{13}{A}\right)}{-0.008} - \frac{\ln\left(\frac{7}{A}\right)}{-0.008}$$

$$\left\{t = \frac{\ln\left(\frac{7}{13}\right)}{(-0.008)}\right\} = 77.3799... = 77 \text{ (nearest minute)} \quad \textbf{A1: awrt 77. Correct solution only.}$$

M1*: Writes down a pair of equations in A and t , for $\theta = 16$ and $\theta = 10$ with either A unknown or A being a positive or negative value.

Al: Two equations with an unknown A.

M1: Uses correct algebra to solve both of their equations leading to answers of the form $-0.008t = \ln k$, where k is a positive numerical value.

M1: Finds difference between the two times. (either way round).

Question Number		Scheme		Mark	cs
(a)	$\frac{d\theta}{dt} = \lambda(120 - \theta), \theta \leq 100$ $\int \frac{1}{120 - \theta} d\theta = \int \lambda dt \text{or}$	$\int \frac{1}{\lambda(120-\theta)} d\theta = \int d\theta$	it	B1	
	$-\ln(120 - \theta); = \lambda t + c \qquad \text{or}$. , , ,		M1 A1; M1 A1	200
	$\{t = 0, \theta = 20 \Rightarrow\} -\ln(120 - 20)$	$\lambda(0) = \lambda(0) + c$	See notes	M1	
	$c = -\ln 100 \Rightarrow -\ln (120 - \theta) =$	$\lambda t - \ln 100$			
	then either	or			
	$-\lambda t = \ln(120 - \theta) - \ln 100$	$\lambda t = \ln 100 - \ln (120)$	$-\theta$)		
	$-\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$	$\lambda t = \ln\left(\frac{100}{120 - \theta}\right)$			
	$e^{-\lambda t} = \frac{120 - \theta}{100}$	$e^{\lambda t} = \frac{100}{120 - \theta}$		dddM1	
	$100e^{-\lambda t} = 120 - \theta$	$(120-\theta)e^{\lambda t} = 100$ $\Rightarrow 120-\theta = 100e^{-\lambda t}$		A1 *	
	leading to $\theta = 120$	$-100e^{-\lambda t}$			
(b)	$\{\lambda = 0.01, \theta = 100 \Rightarrow\}$ 100 =	120 – 100 e ^{-0.01r}		M1	[8
	⇒ 100e ^{-0.01r} = 120 - 100 ⇒ -0	$0.01t = \ln\left(\frac{120 - 100}{100}\right)$	Uses correct order of operations by moving from $100 = 120 - 100e^{-0.01r}$		
	$t = \frac{1}{-0.01} \ln \left(\frac{120 - 100}{100} \right)$		to give $t =$ and $t = A \ln B$, where $B > 0$	dM1	
	$\begin{cases} t = \frac{1}{-0.01} \ln\left(\frac{1}{5}\right) = 100 \ln 5 \\ t = 160.94379 = 161 \text{ (s) (near)} \end{cases}$	est second)	awrt 161	A1	[:
					1

	Notes for Question	
(a)	B1: Separates variables as shown. $d\theta$ and dt should be in the correct positions, though this implied by later working. Ignore the integral signs. Either M1: $\int \frac{1}{120-\theta} d\theta \to \pm A \ln(120-\theta)$ A1: $\int \frac{1}{120-\theta} d\theta \to -\ln(120-\theta)$ M1: $\int \lambda dt \to \lambda t$ A1: $\int \lambda dt \to \lambda t = 0$ IMPORTANT: $\lambda t = 0$ In $\lambda t = 0$	istant. $(120\lambda - \lambda\theta)$, f the equation. or $\ln A$). 60517 }. sinate their is eany errors in
(b)	 M1: Substitutes λ = 0.01 and θ = 100 into the printed equation or one of their earlier equation θ and t. This mark can be implied by subsequent working. dM1: Candidate uses correct order of operations by moving from 100 = 120 - 100 e^{-0.01t} to the Note: that the 2nd Method mark is dependent on the 1st Method mark being awarded in A1: awrt 161 or "awrt" 2 minutes 41 seconds. (Ignore incorrect units). 	=
Aliter (a) Way 2	$\int \frac{1}{120 - \theta} d\theta = \int \lambda dt$ $-\ln(120 - \theta) = \lambda t + c$ See notes $-\ln(120 - \theta) = \lambda t + c$ $\ln(120 - \theta) = -\lambda t + c$ $120 - \theta = Ae^{-\lambda t}$ $\theta = 120 - Ae^{-\lambda t}$ $\{t = 0, \theta = 20 \Rightarrow\} 20 = 120 - Ae^{0}$	B1 M1 A1; M1 A1

	Notes for Question Continued	
(a)	B1M1A1M1A1: Mark as in the original scheme. M1: Substitutes $t = 0$ AND $\theta = 20$ in an integrated equation containing their constant of it could be c or A . Note that this mark can be implied by the correct value of c or A . dddM1: Uses a fully correct method to eliminate their logarithms and writes down an equatheir evaluated constant of integration. Note: This mark is dependent on all three previous method marks being awarded. Note: $\ln(120 - \theta) = -\lambda t + c$ leading to $120 - \theta = e^{-\lambda t} + e^{c}$ or $120 - \theta = e^{-\lambda t} + A$, wo A1*: Same as the original scheme. Note: The jump from $\ln(120 - \theta) = -\lambda t + c$ to $120 - \theta = Ae^{-\lambda t}$ with no incorrect wor in part (a).	uld be dddM0.
Aliter (a) Way 3	$\int \frac{1}{120 - \theta} d\theta = \int \lambda dt \left\{ \Rightarrow \int \frac{-1}{\theta - 120} d\theta = \int \lambda dt \right\}$	В1
may 5	$-\ln \theta - 120 = \lambda t + c$ Modulus requirements for I^{2}	
	$\{t = 0, \theta = 20 \Rightarrow\} -\ln 20 - 120 = \lambda(0) + c$ $\Rightarrow c = -\ln 100 \Rightarrow -\ln \theta - 120 = \lambda t - \ln 100$ Mod not required h	I M/I I
	then either or	
	$-\lambda t = \ln \theta - 120 - \ln 100$ $-\lambda t = \ln \left \frac{\theta - 120}{100} \right $ $\lambda t = \ln 100 - \ln \theta - 120 $ $\lambda t = \ln \left \frac{100}{\theta - 120} \right $ As $\theta \le 100$	
	$-\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$ $e^{-\lambda t} = \frac{120 - \theta}{100}$ $\lambda t = \ln\left(\frac{100}{120 - \theta}\right)$ $e^{\lambda t} = \frac{100}{120 - \theta}$ $Understanding modulus is required in the production of t$	
	$100e^{-\lambda t} = 120 - \theta$ $120 - \theta)e^{\lambda t} = 100$ $\Rightarrow 120 - \theta = 100e^{-\lambda t}$ leading to $\theta = 120 - 100e^{-\lambda t}$	A1 =
	 B1: Mark as in the original scheme. M1: Mark as in the original scheme ignoring the modulus. A1: ∫ 1/120 - θ dθ → -ln θ - 120 . (The modulus is required here). M1A1: Mark as in the original scheme. M1: Substitutes t = 0 AND θ = 20 in an integrated equation containing their constant of it could be c or A. Mark as in the original scheme ignoring the modulus. dddM1: Mark as in the original scheme AND the candidate must demonstrate that they have 	ACCESSORY

marks being awarded.

A1: Mark as in the original scheme.

	Notes for Question Continued				
Aliter (a)	Use of an integrating factor				
Way 4	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda (120 - \theta) \Rightarrow \frac{\mathrm{d}\theta}{\mathrm{d}t} + \lambda \theta = 120\lambda$				
	$IF = e^{\lambda t}$	B1			
	$\frac{\mathrm{d}}{\mathrm{d}t}(\mathrm{e}^{\lambda t}\theta) = 120\lambda\mathrm{e}^{\lambda t},$	M1A1			
	$e^{\lambda t}\theta = 120\lambda e^{\lambda t} + k$	M1A1			
	$\theta = 120 + Ke^{-\lambda t}$	M1			
	$\{t = 0, \theta = 20 \Rightarrow\} -100 = K$				
	$\theta = 120 - 100e^{-\lambda t}$	M1A1			

Question Number	Scheme	Marks
	$\int xe^{4x} dx = \frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\} $ $ \pm \alpha xe^{4x} - \int \beta e^{4x} \{dx\}, \alpha \neq 0, \ \beta > 0 $ $ = \int xe^{4x} dx = \int xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\} $	M1
	$\frac{1}{4}xe^{xx} - \int \frac{1}{4}e^{xx} \left\{ dx \right\}$	A1
	$= \frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} \left\{ + c \right\}$ $\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$	A1 [3
(ii)	$\int \frac{8}{(2x-1)^3} dx = \frac{8(2x-1)^{-2}}{(2)(-2)} \{+c\}$ $\frac{\pm \lambda (2x-1)^{-2}}{(2)(-2)} \text{ or equivalent.}$	M1
(-)	(2)(-2)	A1
	$\left\{ = -2(2x-1)^{-2} \left\{ + c \right\} \right\} $ {Ignore subsequent working}.	[2
(iii)	$\frac{dy}{dx} = e^x \csc 2y \csc y \qquad y = \frac{\pi}{6} \text{ at } x = 0$	
	$\frac{\text{Main Scheme}}{\int \frac{1}{\csc 2y \csc y} dy} = \int e^x dx \qquad \text{or} \int \sin 2y \sin y dy = \int e^x dx$	B1 oe
	$\int 2\sin y \cos y \sin y dy = \int e^x dx$ Applying $\frac{1}{\csc 2y}$ or $\sin 2y \to 2\sin y \cos y$	M1
	Integrates to give $\pm \mu \sin^3 y$	M1
	$\frac{2}{3}\sin^3 y = e^x \left\{ + c \right\} $ $2\sin^2 y \cos y \to \frac{2}{3}\sin^3 y$	A1
	$e^x \rightarrow e^x$	B1
	$\frac{2}{3}\sin^3\left(\frac{\pi}{6}\right) = e^0 + c \text{or} \frac{2}{3}\left(\frac{1}{8}\right) - 1 = c$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c	M1
	$\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} $ $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$	A1
	Alternative Method 1	
	$\int \frac{1}{\csc 2y \csc y} dy = \int e^x dx \qquad \text{or} \int \sin 2y \sin y dy = \int e^x dx$	B1 oe
	$\int -\frac{1}{2}(\cos 3y - \cos y) dy = \int e^x dx \qquad \qquad \sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y$	M1
	Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$	M1
	$-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \qquad -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right)$	A1
	$e^x \to e^x$ as part of solving their DE.	B1
	$-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c \text{ or } -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c $ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c	M1
	$\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \qquad \qquad -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \right\}$	A1
		17

		Question Notes					
(i)	М1	Integration by parts is applied in the form $\pm \alpha x e^{4x} - \int$	$\beta e^{4x} \{dx\}$, where $\alpha \neq 0$, $\beta > 0$.				
		(must be in this form).					
	A1	$\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\} \text{ or equivalent.}$					
	A1	$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ with/without + c. Can be un-simplified	ied.				
	isw	You can ignore subsequent working following on from					
	sc	SPECIAL CASE: A candidate who uses $u = x$, $\frac{dv}{dx}$	= e ^{4x} , writes down the correct "by I	oarts"			
		formula, but makes only one error when applying it can be awa	rded Special Case M1.				
(ii)	M1	$\pm \lambda (2x-1)^{-2}$, $\lambda \neq 0$. Note that λ can be 1.					
	A1	$\frac{8(2x-1)^{-2}}{(2)(-2)}$ or $-2(2x-1)^{-2}$ or $\frac{-2}{(2x-1)^2}$ with/with	thout $+ c$. Can be un-simplified.				
	Note	You can ignore subsequent working which follows fro	om a correct answer.				
(iii)	В1	Separates variables as shown. dy and dx should be in implied by later working. Ignore the integral signs.	the correct positions, though this n	nark can be			
	Note	Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$ or $\int \sin 2y \sin y = \int e^x$					
	M1	$\frac{1}{\csc 2y} \to 2\sin y \cos y \text{or} \sin 2y \to 2\sin y \cos y \text{or} \sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y$					
	2.01	seen anywhere in the candidate's working to (iii).	Prints and Prints				
	M1	Integrates to give $\pm \mu \sin^3 y$, $\mu \neq 0$ or $\pm \alpha \sin 3y \pm \beta \sin y$, $\alpha \neq 0$, $\beta \neq 0$ $2\sin^2 \nu \cos \nu \rightarrow \frac{2}{\pi} \sin^3 \nu$ (with no extra terms) or integrates to give $-\frac{1}{\pi} \left(\frac{1}{\pi} \sin 3\nu - \sin \nu \right)$					
	B1		Evidence that e^x has been integrated to give e^x as part of solving their DE.				
	М1	Some evidence of using both $y = \frac{\pi}{6}$ and $x = 0$ in an in		aining c.			
	Note	that is mark can be implied by the correct value of c.		7			
	A1	$\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ or $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$	or any equivalent correct answ	er.			
	Note Alternation	You can ignore subsequent working which follows from Method 2 (Using integration by parts twice)					
		$n y dy = \int e^x dx$		B1 oe			
			Applies integration by parts twice $\pm \alpha \cos y \sin 2y \pm \beta \sin y \cos 2y$	M2			
	$\frac{1}{3}\cos y \sin y$	$a2y - \frac{2}{3}\sin y\cos 2y = e^x \left\{ + c \right\}$	$\frac{1}{3}\cos y \sin 2y - \frac{2}{3}\sin y \cos 2y$ (simplified or un-simplified)	A1			
		e ^z -	→ e ^x as part of solving their DE.	B1			
			as in the main scheme	M1			
	1						

Question Number	Scheme	Marks
(a)	$\frac{dN}{dt} = \frac{(kt-1)(5000-N)}{t}, t > 0, 0 < N < 5000$ $\int \frac{1}{5000-N} dN = \int \frac{(kt-1)}{t} dt \left\{ \text{or} = \int \left(k - \frac{1}{t}\right) dt \right\}$ See notes $-\ln(5000-N) = kt - \ln t; +c$ See notes	B1 M1 A1; A
	then eg either or or	
	$-kt + c = \ln(5000 - N) - \ln t$ $-kt + c = \ln\left(\frac{5000 - N}{t}\right)$ $kt + c = \ln\left(\frac{t}{5000 - N}\right)$ $kt + c = \ln\left(\frac{t}{5000 - N}\right)$ $5000 - N = e^{-kt + \ln t + c}$	
	$e^{-kt+c} = \frac{5000 - N}{t}$ $e^{kt+c} = \frac{t}{5000 - N}$ $5000 - N = t e^{-kt+c}$	
	leading to $N = 5000 - Ate^{-tt}$ with no incorrect working/statements. See notes	A1 * cso
(b)	$\{t=1,N=1200\Rightarrow\}$ $1200=5000-A\mathrm{e}^{-k}$ At least one correct statement written $\{t=2,N=1800\Rightarrow\}$ $1800=5000-2A\mathrm{e}^{-2k}$ down using the boundary conditions So $A\mathrm{e}^{-k}=3800$	B1
	and $2Ae^{-2k} = 3200$ or $Ae^{-2k} = 1600$ Eg. $\frac{e^{-k}}{2e^{-2k}} = \frac{3800}{3200}$ or $\frac{2e^{-2k}}{e^{-k}} = \frac{3200}{3800}$ An attempt to eliminate A by producing an equation in only k . So $\frac{1}{2}e^k = \frac{3800}{3200}$ or $2e^{-k} = \frac{3200}{3800}$	MI
	$k = \ln\left(\frac{7600}{3200}\right)$ or equivalent $\left\{\text{eg } k = \ln\left(\frac{19}{8}\right)\right\}$ At least one of $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or exact equivalent	A1
	$\left\{ A = 3800(e^k) = 3800 \left(\frac{19}{8} \right) \Rightarrow \right\} A = 9025 \text{or } k = \ln\left(\frac{7600}{3200} \right) \text{or exact equivalent}$	A1
	Alternative Method for the M1 mark in (b) $e^{-k} = \frac{3800}{A}$	
	$2A\left(\frac{3800}{A}\right)^2 = 3200$ An attempt to eliminate k by producing an equation in only A	M1
(c)	$ \left\{ t = 5, \ N = 5000 - 9025(5)e^{-5\ln\left(\frac{19}{8}\right)} \right\} $ $ N = 4402.828401 = 4400 \text{ (fish) (nearest 100)} $ anything that rounds to 4400	B1
	anything that follids to 4400	[1 1

		Question Notes
(a)	B1	Separates variables as shown. dN and dt should be in the correct positions, though this mark can be
		implied by later working. Ignore the integral signs.
	M1	Either $\pm \lambda \ln(5000 - N)$ or $\pm \lambda \ln(N - 5000)$ or $kt - \ln t$ where $\lambda \neq 0$ is a constant.
	A1	For $-\ln(5000 - N) = kt - \ln t$ or $\ln(5000 - N) = -kt + \ln t$ or $-\frac{1}{k}\ln(5000 - N) = t - \frac{1}{k}\ln t$ or
	A1	which is dependent on the 1 st M1 mark being awarded.
		For applying a constant of integration, eg. $+c$ or $+ \ln e^c$ or $+ \ln c$ or A to their integrated equation
	Note	$+c$ can be on either side of their equation for the 2^{nd} A1 mark.
	A1	Uses a constant of integration eg. "c" or " ln e" " "ln c" or and applies a fully correct method to
		prove the result $N = 5000 - Ate^{-tr}$ with no incorrect working seen. (Correct solution only.)
	NOTE	IMPORTANT
		There needs to be an intermediate stage of justifying the A and the e^{-kt} in Ate^{-kt} by for example • either $5000 - N = e^{\ln t - kt + \epsilon}$
		• or $5000 - N = te^{-h + \epsilon}$
		• or $5000 - N = te^{-kt}e^{\epsilon}$
		or equivalent needs to be stated before achieving $N = 5000 - Ate^{-kt}$
(b)	В1	At least one of either $1200 = 5000 - Ae^{-k}$ (or equivalent) or $1800 = 5000 - 2Ae^{-2k}$ (or equivalent
	M1	 Either an attempt to eliminate A by producing an equation in only k.
		 or an attempt to eliminate k by producing an equation in only A
	A1	At least one of $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent
	A1	Both $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent
	Note	Alternative correct values for k are $k = \ln\left(\frac{19}{8}\right)$ or $k = -\ln\left(\frac{8}{19}\right)$ or $k = \ln 7600 - \ln 3200$
		or $k = -\ln\left(\frac{3800}{9025}\right)$ or equivalent.
	Note	k = 0.8649 without a correct exact equivalent is A0.
(c)	B1	anything that rounds to 4400

Question Number	Scheme	Marks
(a)	2 = A + B	8
(a)	$\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{(P-2)}$	
	$2 \equiv A(P-2) + BP$ Can be implied.	
	A = -1, B = 1 Either one.	A1
	giving $\frac{1}{(P-2)} - \frac{1}{P}$ See notes. cao, aef	A1
(b)	$\frac{dP}{dt} = \frac{1}{2}P(P-2)\cos 2t$	[3]
	$\int \frac{2}{P(P-2)} dP = \int \cos 2t dt$ can be implied by later working	B1 oe
	$\pm \lambda \ln(P-2) \pm \mu \ln P,$ $\ln(P-2) - \ln P = \frac{1}{2} \sin 2t \ (+c)$ $\lambda \neq 0, \ \mu \neq 0$	M1
	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$	A1
	$\{t=0, P=3 \Rightarrow\}$ $\ln 1 - \ln 3 = 0 + c$ $\{\Rightarrow c = -\ln 3 \text{ or } \ln(\frac{1}{3})\}$ See notes	M1
	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t - \ln 3$ $\ln\left(\frac{3(P-2)}{P}\right) = \frac{1}{2}\sin 2t$ Starting from an equation of the form	<u> </u>
	$\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t}$ $\frac{\lambda \ln(P-\beta) \pm \mu \ln P = \pm K \sin \delta t + c}{\lambda, \mu, \beta, K, \delta \neq 0}, \text{ applies a fully correct method to eliminate their logarithms.}$ $\mathbf{Must have a constant of integration that need}$ $\mathbf{not be evaluated (see note)}$	М1
	$3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t}$ A complete method of rearranging to make P the subject. gives $3P - Pe^{\frac{1}{2}\sin 2t} = 6 \Rightarrow P(3 - e^{\frac{1}{2}\sin 2t}) = 6$ Must have a constant of integration	dM1
	$P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})} * $ that need not be evaluated (see note) Correct proof.	A1 * csc
(c)	$\{\text{population} = 4000 \Longrightarrow\} P = 4$ States $P = 4$ or applies $P = 4$	M1
100000	Obtains $+ 2 \sin 2t - \ln k$ or $+ 2 \sin t - \ln k$	
	$\frac{1}{2}\sin 2t = \ln\left(\frac{3(4-2)}{4}\right) \left\{ = \ln\left(\frac{3}{2}\right) \right\}$ $0 \text{ taims } 2\pi \sin 2t = \ln x \text{ of } 2\pi \sin t = \ln x,$ $\lambda \neq 0, k > 0 \text{ where } \lambda \text{ and } k \text{ are numerical values and } \lambda \text{ can be 1}$	M1
	t = 0.4728700467 anything that rounds to 0.473 Do not apply isw here	A1
		[3] 13

Question Number	Scheme	Marks			
	Method 2 for Q7(b)				
(b)	$\ln(P-2) - \ln P = \frac{1}{2}\sin 2t \ (+c)$ As before for	B1M1A1			
	$ \ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c $				
	Starting from an equation of the form $\pm \lambda \ln(P-\beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)	3 rd M1			
	$(P-2) = APe^{\frac{1}{2}\sin 2t} \Rightarrow P - APe^{\frac{1}{2}\sin 2t} = 2$ $\Rightarrow P(1 - Ae^{\frac{1}{2}\sin 2t}) = 2 \Rightarrow P = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2t})}$ A complete method of rearranging to make P the subject. Condone sign slips or constant errors. Must have a constant of integration that need not be evaluated (see note)	4 th dM1			
	$\{t = 0, P = 3 \Rightarrow\} 3 = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2(0)})}$ See notes (Allocate this mark as the 2 nd M1 mark on ePEN).	2 nd M1			
	$\left\{ \Rightarrow \ 3 = \frac{2}{(1-A)} \Rightarrow A = \frac{1}{3} \right\}$				
	$\Rightarrow P = \frac{2}{\left(1 - \frac{1}{3}e^{\frac{1}{2}\sin 2t}\right)} \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}^*$ Correct proof.	Al * cso			
	Question Notes				
(a)	M1 Forming a correct identity. For example, $2 \equiv A(P-2) + BP$ from $\frac{2}{P(P-2)} = \frac{A}{P}$	$\frac{B}{(P-2)}$			
	Note A and B are not referred to in question.				
	A1 Either one of $A = -1$ or $B = 1$.				
	A1 $\frac{1}{(P-2)} - \frac{1}{P}$ or any equivalent form. This answer cannot be recovered from part (b).				
	Note M1A1A1 can also be given for a candidate who finds both $A = -1$ and $B = 1$ and $\frac{A}{P}$ is seen in their working.	$+\frac{B}{(P-2)}$			
	Note Candidates can use 'cover-up' rule to write down $\frac{1}{(P-2)} - \frac{1}{P}$, so as to gain all three	e marks.			
	Note Equating coefficients from $2 \equiv A(P-2) + BP$ gives $A + B = 2, -2A = 2 \Rightarrow A = -1$,	B=1			

(b)	B1 Separates variables as shown on the Mark Scheme. dP and dt should be in the correct positions,
. ,	though this mark can be implied by later working. Ignore the integral signs.
	Note Eg: $\int \frac{2}{P^2 - 2P} dP = \int \cos 2t dt$ or $\int \frac{1}{P(P-2)} dP = \frac{1}{2} \int \cos 2t dt$ o.e. are also fine for B1.
	Note Condone $2\ln(P-2) + 2\ln P$ or $2\ln(P(P-2))$ or $2\ln(P^2-2P)$ or $\ln(P^2-2P)$
	1st A1 Correct result of $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$ or $2\ln(P-2) - 2\ln P = \sin 2t$
	o.e. with or without +c
	2 nd M1 Some evidence of using both $t = 0$ and $P = 3$ in an integrated equation containing a constant of integration. Eg: c or A , etc.
	3 rd M1 Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\lambda, \mu, \beta, K, \delta \neq 0$,
	applies a fully correct method to eliminate their logarithms.
	4th M1 dependent on the third method mark being awarded. A complete method of rearranging to make P the subject. Condone sign slips or constant errors.
	Note For the 3 rd M1 and 4 th M1 marks, a candidate needs to have included a constant of integration,
	in their working. eg. c, A, ln A or an evaluated constant of integration.
	2 nd A1 Correct proof of $P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$. Note: This answer is given in the question.
	4/400 000 kg 100 kg 100 000 000 000 000 000 000 000 000 00
	Note $\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c$ followed by $\frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c}$ is 3^{rd} M0, 4^{th} M0, 2^{nd} A0.
	Note $\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t + c} \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c}$ is final M1M0A0
	4th M1 for making P the subject
	Note there are three type of manipulations here which are considered acceptable for making
	P the subject. $3(P-2)$
	(1) M1 for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t} \Rightarrow P(3-e^{\frac{1}{2}\sin 2t}) = 6$
	$\Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$
	(3-0)
	(2) M1 for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - \frac{6}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - e^{\frac{1}{2}\sin 2t} = \frac{6}{P} \Rightarrow \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$
	(3) M1 for $\left\{ \ln(P-2) + \ln P = \frac{1}{2}\sin 2t + \ln 3 \Rightarrow \right\} P(P-2) = 3e^{\frac{1}{2}\sin 2t} \Rightarrow P^2 - 2P = 3e^{\frac{1}{2}\sin 2t}$
	$\Rightarrow (P-1)^2 - 1 = 3e^{\frac{1}{2}\sin 2t} \text{ leading to } P =$
(c)	M1 States $P = 4$ or applies $P = 4$
0.87.87.0	M1 Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$, where λ and k are numerical values and λ can be 1
	Al anything that rounds to 0.473. (Do not apply isw here)
	Note Do not apply ignore subsequent working for A1. (Eg: 0.473 followed by 473 years is A0.)
	Note Use of $P = 4000$: Without the mention of $P = 4$, $\frac{1}{2}\sin 2t = \ln 2.9985$ or $\sin 2t = 2\ln 2.9985$
	or sin2t = 2.1912 will usually imply M0M1A0 Note Use of Degrees: t = awrt 27.1 will usually imply M1M1A0

Question Number	Scheme	Notes	Marks
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$		
(a) Way 1	$\int \frac{1}{x} \mathrm{d}x = \int -\frac{5}{2} \mathrm{d}t$	Separates variables as shown dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.	B1
	$\ln x = -\frac{5}{2}t + c$	Integrates both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$ or $\pm k \rightarrow \pm kt$ (with respect to t); $k, \alpha \neq 0$	M1
	2	$\ln x = -\frac{5}{2}t + c, \text{ including "} + c$ "	A1
	$\begin{cases} t = 0, x = 60 \Longrightarrow \end{cases} \ln 60 = c$ $\ln x = -\frac{5}{2}t + \ln 60 \Longrightarrow \underline{x = 60e^{-\frac{5}{2}t}} \text{ or } x$	Finds their c and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{2}{2}t}}$	A1 cso
1	_	e ^T with no incorrect working seen	[4]
(a) Way 2	$\frac{dt}{dx} = -\frac{2}{5x} \text{or} t = \int -\frac{2}{5x} dx$	Either $\frac{dt}{dx} = -\frac{2}{5x}$ or $t = \int -\frac{2}{5x} dx$	B1
	$t = -\frac{2}{5}\ln x + c$	Integrates both sides to give either $t =$ or $\pm \alpha \ln px$; $\alpha \neq 0$, $p > 0$	M1
	$T = -\frac{1}{5}mx + c$	$t = -\frac{2}{5} \ln x + c, \text{ including "} + c$ "	A1
	$\left\{t = 0, x = 60 \Longrightarrow\right\} c = \frac{2}{5} \ln 60 \Longrightarrow t = -\frac{2}{5}$ $\Longrightarrow -\frac{5}{2}t = \ln x - \ln 60 \Longrightarrow \underline{x} = 60e^{-\frac{5}{2}t} \text{ or}$	to achieve $x = 60e^{-\frac{2}{3}}$ or $x = \frac{60}{3}$	A1 cso
			[4]
(a) Way 3	$\int_{60}^{x} \frac{1}{x} dx = \int_{0}^{t} -\frac{5}{2} dt$	Ignore limits	B1
961	Integrates both sides to give either $\pm \frac{\alpha}{x} \to \pm \alpha \ln x$ $\begin{bmatrix} \ln x \end{bmatrix}_{60}^{x} = \begin{bmatrix} -\frac{5}{2}t \end{bmatrix}^{t}$ or $\pm k \to \pm kt$ (with respect to t); $k, \alpha \neq 0$		M1
	L 360 L 2 J ₀	$[\ln x]_{60}^x = \left[-\frac{5}{2}t\right]_0^t$ including the correct limits	A1
	$\ln x - \ln 60 = -\frac{5}{2}t \implies \underline{x = 60e^{-\frac{5}{2}t}} \text{ or } x = \frac{1}{2}$	$= \frac{60}{e^{\frac{4t}{2}}}$ Correct algebra leading to a correct result	A1 cso
	_		[4]

(b)	$20 = 60e^{-\frac{5}{2}t} \text{or} \ln 20 = -\frac{5}{2}t + \ln 20$	Substitutes $x = 20$ into an equation in the form of either $x = \pm \lambda e^{\pm \mu} \pm \beta$ or $x = \pm \lambda e^{\pm \mu \pm \alpha \ln \delta x}$ or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$; $\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0	M1
	$t = -\frac{2}{5} \ln \left(\frac{20}{60} \right)$ $\left\{ = 0.4394449 \text{ (days)} \right\}$ Note: t must be greater than 0	dependent on the previous M mark Uses correct algebra to achieve an equation of the form of either $t = A \ln \left(\frac{50}{20}\right)$ or $A \ln \left(\frac{20}{60}\right)$ or $A \ln 3$ or $A \ln \left(\frac{1}{3}\right)$ o.e. or $t = A(\ln 20 - \ln 60)$ or $A(\ln 60 - \ln 20)$ o.e. $(A \in \Box, t > 0)$	1111
	$\Rightarrow t = 632.8006 = 633$ (to the ne	awar obb of To House this awar by Hilliones	A1 cso
	Note: dMl can be imp	blied by $t = \text{awrt } 0.44$ from no incorrect working.	

Question Number	Scheme	Notes	Marks
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$		
(a) Way 4	$\int \frac{2}{5x} \mathrm{d}x = -\int \mathrm{d}t$	Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.	B1
	$\frac{2}{5}\ln(5x) = -t + c$	Integrates both sides to give either $\pm \alpha \ln(px)$ or $\pm k \rightarrow \pm kt$ (with respect to t); k , $\alpha \neq 0$; $p > 0$	M1
	$\frac{1}{5}$ m(3x) = $-i + \epsilon$	$\frac{2}{5}\ln(5x) = -t + c, \text{ including "} + c$ "	A1
	$\begin{cases} t = 0, x = 60 \Rightarrow \end{cases} \frac{2}{5} \ln 300 = c$ $\frac{2}{5} \ln (5x) = -t + \frac{2}{5} \ln 300 \Rightarrow \underline{x = 60e}$ $x = \frac{60}{e^{\frac{1}{2}t}}$	Finds their c and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no incorrect working seen	A1 cso
1000			[4
(a) Way 5	$\left\{ \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \implies \right\} t = \int_{60}^{x} -\frac{2}{5x} \mathrm{d}x$	Ignore limits	B1
	$t = \left[-\frac{2}{5} \ln x \right]_{co}^{x}$	Integrates both sides to give either $\pm k \rightarrow \pm kt$ (with respect to t) or $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$; $k, \alpha \neq 0$	M1
	L 5 J ₆₀	$t = \left[-\frac{2}{5} \ln x \right]_{60}^{x}$ including the correct limits	A1
	$t = -\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \Rightarrow -\frac{5}{2}t = \ln x -$	ln60	
	$\Rightarrow \underline{x = 60e^{-\frac{5}{2}t}} \text{ or } \underline{x = \frac{60}{e^{\frac{5}{2}t}}}$	Correct algebra leading to a correct result	A1 cso
		12,	[4]

	316	Question Notes		
(a)	Bl	For the correct separation of variables. E.g. $\int \frac{1}{5x} dx = \int -\frac{1}{2} dt$		
	Note	B1 can be implied by seeing either $\ln x = -\frac{5}{2}t + c$ or $t = -\frac{2}{5}\ln x + c$ with or without $+c$		
	Note	B1 can also be implied by seeing $[\ln x]_{60}^x = \left[-\frac{5}{2}t\right]_0^t$		
	Note	Allow A1 for $x = 60\sqrt{e^{-5t}}$ or $x = \frac{60}{\sqrt{e^{5t}}}$ with no incorrect working seen		
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60 \implies x = 60e^{-\frac{5}{2}t}$		
	Note	Give final A0 for writing $x = e^{-\frac{5}{2}t + \ln 60}$ as their final answer (without seeing $x = 60e^{-\frac{5}{2}t}$)		
	Note	Way 1 to Way 5 do not exhaust all the different methods that candidates can give.		
	Note	Give B0M0A0A0 for writing down $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no evidence of working or integration seen.		
(b)	Al	You can apply cso for the work only seen in part (b).		
	Note	Give dM1(Implied) A1 for $\frac{5}{2}t = \ln 3$ followed by $t = \text{awrt } 633$ from no incorrect working.		
	Note	Substitutes $x = 40$ into their equation from part (a) is M0dM0A0		

Question Number	Scheme	Notes	Marks
	$\frac{dh}{dt} = k \sqrt{(h-9)}, 9 < h \le 200; h = 130, \frac{dh}{dt} = -$	1.1	
(a)	$-1.1 = k \sqrt{(130 - 9)} \implies k =$	s $h = 130$ and either $\frac{dh}{dt} = -1.1$ or $\frac{dh}{dt} = 1.1$ printed equation and rearranges to give $k =$	M1
	so, $k = -\frac{1}{10}$ or -0.1	$k = -\frac{1}{10}$ or -0.1	A1
	1995	2000000 01	[2
(b) Way 1	un	riables correctly. dh and dt should not be in ositions, although this mark can be implied by later working. Ignore the integral signs.	В1
	$\int (h-9)^{-\frac{1}{2}} \mathrm{d}h = \int k \mathrm{d}t$		
	Integra 1	ates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm \mu \sqrt{(h-9)}$; $\lambda, \mu \neq 0$	M1
	(2)	et or $\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{with/without } + c,$	A1
	or ec	uivalent, which can be un-simplified or simplified.	
	$\{t=0, h=200 \Rightarrow\} 2\sqrt{(200-9)} = k(0) + c$	Some evidence of applying both $t = 0$ and $h = 200$ to changed equation containing a constant of integration, e.g. c or A	M1
	$\Rightarrow c = 2\sqrt{191} \Rightarrow 2(h-9)^{\frac{1}{2}} = -0.1t + 2\sqrt{191}$ $\{h = 50 \Rightarrow\} 2\sqrt{(50-9)} = -0.1t + 2\sqrt{191}$ $t = \dots$	dependent on the previous M mark Applies $h = 50$ and their value of c to their changed equation and rearranges to find the value of $t =$	dM1
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minutes) (nearest minutes)	t = $20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148	A1 cso
0		7	[6]

(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$	in the wrong posit	les correctly. dh and dt should not be tions, although this mark can be implied. Integral signs and limits not necessary.	B1
	$\int_{200}^{50} (h-9)^{-\frac{1}{2}} dh = \int_{0}^{T} k dt$	* ***		
	$\begin{bmatrix} 1 & \frac{1}{2} \end{bmatrix}^{50}$	Integrates $\frac{1}{\sqrt{2}}$	$\frac{\pm \lambda}{(h-9)}$ to give $\pm \mu \sqrt{(h-9)}$; $\lambda, \mu \neq 0$	M1
	$\left[\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\right]_{200}^{3} = \left[kt\right]_{0}^{T}$	100.000	$\frac{(i-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without limits,}$ at, which can be un-simplified or simplified.	A1
	$2\sqrt{41} - 2\sqrt{191} = kt \text{ or } kT$	Atter	inputs to apply limits of $h = 200$, $h = 50$ implied) $t = 0$ to their changed equation	м1 ¬
	$t = \frac{2\sqrt{41} - 2\sqrt{191}}{-0.1}$	Th	dependent on the previous M mark en rearranges to find the value of $t =$	dM1
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minu	ites) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ or awrt 148 or 2 hours and awrt 28 minutes	A1 cso
85 35			:	[6]
9 6				8

_	Question Notes		
(b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent	
	Note	$\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}} \text{ leading to } t = \frac{2}{k}\sqrt{(h-9)} \text{ (+ c) with/without + c is B1M1A1}$	
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing $\frac{dh}{dt} = -k\sqrt{(h-9)}$ or $\int \frac{dh}{\sqrt{(h-9)}} = \int -k dt$ or $\frac{dh}{dt} = -0.1\sqrt{(h-9)}$ or $\int \frac{dh}{\sqrt{(h-9)}} = \int -0.1 dt$ Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in part (b).	