

Solving Trigonometric Equations 2 - Edexcel Past Exam Questions MARK SCHEME

Question 1

Question number	Scheme	Marks	
(i)	$\sin(3x-15) = \frac{1}{2}$ so $3x-15 = 30$ (\$\alpha\$) and $x = 15$		
	Need $3x-15=180-\alpha$ or $3x-15=540-\alpha$	M1	
	Need $3x-15=180-\alpha$ and $3x-15=360+\alpha$ and $3x-15=540-\alpha$	M1	
	x = 55 or 175	A1	
	x = 55, 135, 175	A1	(6)
(ii)	At least one of $(\frac{a\pi}{10} - b) = 0$ (or $n\pi$) $(\frac{a3\pi}{5} - b) = \pi$ {or $(n+1)\pi$ } or in degrees	M1	
	or $(\frac{a11\pi}{10} - b) = 2\pi$ {or $(n+2)\pi$ } If two of above equations used eliminates a or b to find one or both of these or uses period property of curve to find a or uses other valid method to find either a or b (May see $\frac{5\pi}{10}a = \pi$ so $a = 0$)	M1	
	Obtains $a = 2$	A1	
	Obtains $b = \frac{\pi}{5}$ (must be in radians)	A1	(4)

Question 2

Question Number	Scheme		Marks	
	(i) $9\sin(\theta + 60^{\circ}) = 4$; $0 \le \theta < 360^{\circ}$			
	(ii) $2 \tan x - 3 \sin x = 0$; $-\pi \le x < \pi$			
(i)	$\sin(\theta + 60^{\circ}) = \frac{4}{9}$, so $(\theta + 60^{\circ}) = 26.3877$	Sight of $\sin^{-1}\left(\frac{4}{9}\right)$ or awrt 26.4° or 0.461°	M1	
	$(\alpha = 26.3877)$	Can also be implied for $\theta = \text{awrt} - 33.6$ (i.e. $26.4 - 60$)		
		$\theta + 60^{\circ}$ = either "180 – their α " or		
	So, $\theta + 60^{\circ} = \{153.6122, 386.3877\}$	" 360° + their α " and not for θ = either		
		"180 – their α " or "360° + their α ". This	M1	
		can be implied by later working. The candidate's α could also be in radians but do not allow mixing of degrees and radians.		
		A1: At least one of		
	and $\theta = \{93.6122, 326.3877\}$	awrt 93.6° or awrt 326.4°	A1 A1	
		A1: Both awrt 93.6° and awrt 326.4°		
		nust come from correct work		
	Ignore extra solutions outside the range. In an otherwise fully correct solution deduct the final A1for any extra solutions in range			
	in an onle wise tuny correct solution dedica	the linar Arror any extra solutions in range	[4]	
(ii)	$2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$	Applies $\tan x = \frac{\sin x}{\cos x}$	M1	
	Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied	d by $2\tan x - 3\sin x = 0 \Rightarrow \tan x(2 - 3\cos x)$		
	$2\sin x - 3\sin x \cos x = 0$			
	$\sin x(2-3\cos x)=0$			
	$\cos x = \frac{2}{3}$	$\cos x = \frac{2}{3}$	A1	
		A1: One of either awrt 0.84 or awrt -0.84		
	$x = \text{awrt}\{0.84, -0.84\}$	A1ft: You can apply ft for $x = \pm \alpha$, where	A1A1ft	
		$\alpha = \cos^{-1} k$ and $-1 \le k \le 1$		
	In this part of the solution, if there are any extra answers in range in an otherwise			
	correct solution	withhold the Alft. Both $x = 0$ and $-\pi$ or awrt -3.14 from		
	(sinx = 0	D.	
	$\{\sin x = 0 \Rightarrow\} x = 0 \text{ and } -\pi$	In this part of the solution, ignore extra solutions in range.	B1	
	Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$			
	Ignore extra solutions outside the range			
	For all answers in degrees in (ii) M1A1A0A1ftB0 is possible			
	Allow the use of θ in place of x in (ii)			
			[5]	
			Total 9	

Question 3

Question Number	Scheme	
	$1 - 2\cos\left(\theta - \frac{\pi}{5}\right) = 0 \; ; \; -\pi < \theta \; , \; \pi$	
(i)	$\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \frac{1}{2}$ or $-\frac{1}{2}$	M1
	$\theta = \left\{ -\frac{2\pi}{15}, \frac{8\pi}{15} \right\}$ At least one of $-\frac{2\pi}{15}$ or $\frac{8\pi}{15}$ or -24° or 96° or awrt 1.68 or awrt -0.419	A1
	$ \begin{array}{c} $	A1
NB		[3]
Misread	Misreading $\frac{\pi}{5}$ as $\frac{\pi}{6}$ or $\frac{\pi}{3}$ (or anything else)— treat as misread so M1 A0 A0 is maximum mark	
	$4\cos^2 x + 7\sin x - 2 = 0$, 0,, $x < 360^\circ$	
(ii)	$4(1-\sin^2 x) + 7\sin x - 2 = 0$ Applies $\cos^2 x = 1 - \sin^2 x$	M1
	$4 - 4\sin^2 x + 7\sin x - 2 = 0$	
	$4\sin^2 x - 7\sin x - 2 = 0$ Correct 3 term, $4\sin^2 x - 7\sin x - 2 = 0$	A1 oe
	$(4\sin x + 1)(\sin x - 2)$ {= 0}, $\sin x =$ Valid attempt at solving and $\sin x =$	M1
	$\sin x = -\frac{1}{4}, \left\{\sin x = 2\right\}$ $\sin x = -\frac{1}{4} \text{ (See notes.)}$	A1 cso
	At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or $x = \text{awrt}\{194.5, 345.5\}$ awrt 6.0	A1ft
	awrt 194.5 and awrt 345.5	A1 [6]
NB		9
Misread	Writing equation as $4\cos^2 x - 7\sin x - 2 = 0$ with a sign error should be marked by applying	
	the scheme as it simplifies the solution (do not treat as misread) Max mark is $3/6$ $4(1 - \sin^2 x) - 7\sin x - 2 = 0$	Ml
	$4\sin^2 x + 7\sin x - 2 = 0$	A0
	$(4\sin x - 1)(\sin x + 2)$ {= 0}, $\sin x =$ Valid attempt at solving and $\sin x =$	M1
	$\sin x = +\frac{1}{4}, \left\{\sin x = -2\right\} \qquad \qquad \sin x = \frac{1}{4} \text{ (See notes.)}$	A0
	x = awrt165.5	Alft
	Incorrect answers	A0

Question Notes					
(i)	M1	Rearranges to give $\cos\left(\theta - \frac{\pi}{5}\right) = \pm \frac{1}{2}$			
	Note	M1 can be implied by seeing either $\frac{\pi}{3}$ or 60° as a result of taking $\cos^{-1}()$.			
	Al	Answers may be in degrees or radians for this mark and may have just one correct answer Ignore mixed units in working if correct answers follow (recovery)			
	Al	Both answers correct and in radians as multiples of $\pi = -\frac{2\pi}{15}$ and $\frac{8\pi}{15}$			
		Ignore EXTRA solutions outside the range $-\pi < \theta \le \pi$ but lose this mark for extra solutions in this range.			
(ii)	1 st M1	Using $\cos^2 x = 1 - \sin^2 x$ on the given equation. [Applying $\cos^2 x = \sin^2 x - 1$, scores M0.]			
	1st A1	Obtaining a correct three term equation eg. either $4\sin^2 x - 7\sin x - 2 = 0$			
		or $-4\sin^2 x + 7\sin x + 2 = 0$ or $4\sin^2 x - 7\sin x = 2$ or $4\sin^2 x = 7\sin x + 2$, etc.			
	2 nd M1	For a valid attempt at solving a 3TQ quadratic in sine. Methods include factorization, quadratic formula, completion of the square (unlikely here) and calculator. (See notes on page 6 for general principles on awarding this mark) Can use any variable here, s , y , x or $\sin x$, and an attempt to find at least one of the solutions for $\sin x$. This solution may be outside the range for $\sin x$			
	2nd A1	$\sin x = -\frac{1}{4}$ BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore extra answer			
		of $\sin x = 2$, but penalise if candidate states an incorrect result. e.g. $\sin x = -2$.			
	Note	$\sin x = -\frac{1}{4}$ can be implied by later correct working if no errors are seen.			
	3 rd Alft	At least one of awrt 194.5 or awrt 345.5 or awrt 3.4 or awrt 6.0. This is a limited follow through.			
		Only follow through on the error $\sin x = \frac{1}{4}$ and allow for 165.5 special case (as this is equivalent			
		work) This error is likely to earn M1A1M1A0A1A0 so 4/6 or M1A0M1A0A1A0 if the quadratic had a sign slip.			
	4 th A1	awrt 194.5 and awrt 345.5			
	Note	If there are any EXTRA solutions inside the range 0 ,, $x < 360^{\circ}$ and the candidate would			
		otherwise score FULL MARKS then withhold the final A1 mark.			
	Special Cases	Ignore EXTRA solutions outside the range 0 " x < 360°. Rounding error Allow M1A1M1A1A1A0 for those who give two correct answers but wrong accuracy e.g. awrt 194, 346 (Remove final A1 for this error) Answers in radians:— lose final mark so either or both of 3.4, 6.0 gets A1ftA0 It is possible to earn M1A0A1A1 on the final 4 marks if an error results fortuitously in			
		$\sin x = -1/4$ then correct work follows.			