Transformations of Graphs 2 - Edexcel Past Exam Questions

1.

Figure 1
Figure 1 shows the graph of equation $y=\mathrm{f}(x)$.
The points $P(-3,0)$ and $Q(2,-4)$ are stationary points on the graph.
Sketch, on separate diagrams, the graphs of
(a) $y=3 \mathrm{f}(x+2)$,
(b) $y=|\mathrm{f}(x)|$.

On each diagram, show the coordinates of any stationary points.
2.

Figure 1

Figure 1 shows part of the curve with equation $y=\mathrm{f}(x), x \in \mathbb{R}$.
The curve passes through the points $Q(0,2)$ and $P(-3,0)$ as shown.
(a) Find the value of $\mathrm{ff}(-3)$.

On separate diagrams, sketch the curve with equation
(b) $y=\mathrm{f}^{-1}(x)$,
(c) $y=\mathrm{f}(|x|)-2$,
(d) $y=2 \mathrm{f}\left(\frac{1}{2} x\right)$.

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.
3. Given that

$$
\mathrm{f}(x)=\ln x, \quad x>0
$$

sketch on separate axes the graphs of
(i) $y=\mathrm{f}(x)$,
(ii) $y=|\mathrm{f}(x)|$,
(iii) $y=-\mathrm{f}(x-4)$.

Show, on each diagram, the point where the graph meets or crosses the x-axis. In each case, state the equation of the asymptote.
4.

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x), x>0$, where f is an increasing function of x. The curve crosses the x-axis at the point $(1,0)$ and the line $x=0$ is an asymptote to the curve.

On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(2 x), x>0$
(b) $y=|\mathrm{f}(x)|, \quad x>0$

Indicate clearly on each sketch the coordinates of the point at which the curve crosses or meets the x-axis.

June 13(R) Q2
5.

Figure 1

Figure 1 shows part of the graph with equation $y=\mathrm{f}(x), x \in \mathbb{R}$.

The graph consists of two line segments that meet at the point $Q(6,-1)$.

The graph crosses the y-axis at the point $P(0,11)$.
Sketch, on separate diagrams, the graphs of
(a) $y=|\mathrm{f}(x)|$
(b) $y=2 \mathrm{f}(-x)+3$

On each diagram, show the coordinates of the points corresponding to P and Q.
Given that $\mathrm{f}(x)=a|x-b|-1$, where a and b are constants,
(c) state the value of a and the value of b.
6. (a) Sketch the graph with equation

$$
\begin{equation*}
y=|4 x-3| \tag{2}
\end{equation*}
$$

stating the coordinates of any points where the graph cuts or meets the axes.

Find the complete set of values of x for which
(b)

$$
\begin{equation*}
|4 x-3|>2-2 x \tag{4}
\end{equation*}
$$

(c)

$$
\begin{equation*}
|4 x-3|>\frac{3}{2}-2 x \tag{2}
\end{equation*}
$$

7. Given that

$$
\mathrm{f}(x)=2 \mathrm{e}^{x}-5, \quad x \in \mathbb{R},
$$

(a) sketch, on separate diagrams, the curve with equation
(i) $y=\mathrm{f}(x)$,
(ii) $y=|\mathrm{f}(x)|$.

On each diagram, show the coordinates of each point at which the curve meets or cuts the axes.

On each diagram state the equation of the asymptote.
(b) Deduce the set of values of x for which $\mathrm{f}(x)=|\mathrm{f}(x)|$.
(c) Find the exact solutions of the equation $|\mathrm{f}(x)|=2$.
8. Given that a and b are positive constants,
(a) on separate diagrams, sketch the graph with equation
(i) $y=|2 x-a|$
(ii) $y=|2 x-a|+b$

Show, on each sketch, the coordinates of each point at which the graph crosses or meets the axes.

Given that the equation

$$
|2 x-a|+b=\frac{3}{2} x+8
$$

has a solution at $x=0$ and a solution at $x=c$,
(b) find c in terms of a.

