Integration: Trapezium Rule 2 - Edexcel Past Exam Questions

1.

Figure 3

Figure 3 shows a sketch of the curve with equation $y=\frac{2 \sin 2 x}{(1+\cos x)}, 0 \leq x \leq \frac{\pi}{2}$.
The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.
The table below shows corresponding values of x and y for $y=\frac{2 \sin 2 x}{(1+\cos x)}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$
y	0		1.17157	1.02280	0

(a) Complete the table above giving the missing value of y to 5 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places.
(c) Using the substitution $u=1+\cos x$, or otherwise, show that

$$
\begin{equation*}
\int \frac{2 \sin 2 x}{(1+\cos x)} \mathrm{d} x=4 \ln (1+\cos x)-4 \cos x+k, \tag{5}
\end{equation*}
$$

where k is a constant.
(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.
2.

Figure 3
Figure 3 shows a sketch of part of the curve with equation $y=x^{\frac{1}{2}} \ln 2 x$.
The finite region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the lines $x=1$ and $x=4$.
(a) Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of R, giving your answer to 2 decimal places.
(b) Find $\int x^{\frac{1}{2}} \ln 2 x d x$.
(c) Hence find the exact area of R, giving your answer in the form $a \ln 2+b$, where a and b are exact constants.
3.

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y=\frac{x}{1+\sqrt{ } x}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the line with equation $x=1$ and the line with equation $x=4$.
(a) Copy and complete the table with the value of y corresponding to $x=3$, giving your answer to 4 decimal places.

x	1	2	3	4
y	0.5	0.8284		1.3333

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate of the area of the region R, giving your answer to 3 decimal places.
(c) Use the substitution $u=1+\sqrt{ } x$, to find, by integrating, the exact area of R.
4.

Figure 1
Figure 1 shows part of the curve with equation $x=4 t \mathrm{e}^{-\frac{1}{3} t}+3$. The finite region R shown shaded in Figure 1 is bounded by the curve, the x-axis, the t-axis and the line $t=8$.
(a) Complete the table with the value of x corresponding to $t=6$, giving your answer to 3 decimal places.

t	0	2	4	6	8
x	3	7.107	7.218		5.223

(b) Use the trapezium rule with all the values of x in the completed table to obtain an estimate for the area of the region R, giving your answer to 2 decimal places.
(c) Use calculus to find the exact value for the area of R.
(d) Find the difference between the values obtained in part (b) and part (c), giving your answer to 2 decimal places.
5.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=\frac{10}{2 x+5 \sqrt{x}}, x>0$.
The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, and the lines with equations $x=1$ and $x=4$.

The table below shows corresponding values of x and y for $y=\frac{10}{2 x+5 \sqrt{ } x}$.

x	1	2	3	4
y	1.42857	0.90326		0.55556

(a) Complete the table above by giving the missing value of y to 5 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.
(c) By reference to the curve in Figure 1, state, giving a reason, whether your estimate in part (b) is an overestimate or an underestimate for the area of R.
(d) Use the substitution $u=\sqrt{ } x$, or otherwise, to find the exact value of

$$
\begin{equation*}
\int_{1}^{4} \frac{10}{2 x+5 \sqrt{ } x} \mathrm{~d} x \tag{6}
\end{equation*}
$$

June 14 Q3
6.

Figure 1
Figure 1 shows a sketch of part of the curve with equation

$$
y=(2-x) \mathrm{e}^{2 x}, \quad x \in^{\sim}
$$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the y-axis.

The table below shows corresponding values of x and y for $y=(2-x) \mathrm{e}^{2 x}$.

x	0	0.5	1	1.5	2
y	2	4.077	7.389	10.043	0

(a) Use the trapezium rule with all the values of y in the table, to obtain an approximation for the area of R, giving your answer to 2 decimal places.
(b) Explain how the trapezium rule can be used to give a more accurate approximation for the area of R.
(c) Use calculus, showing each step in your working, to obtain an exact value for the area of R. Give your answer in its simplest form.
7.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=x^{2} \ln x, x \geq 1$.
The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line $x=2$.

The table below shows corresponding values of x and y for $y=x^{2} \ln x$.

x	1	1.2	1.4	1.6	1.8	2
y	0	0.2625		1.2032	1.9044	2.7726

(a) Complete the table above, giving the missing value of y to 4 decimal places.
(b)Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places.
(c) Use integration to find the exact value for the area of R.
8.

Figure 1

Figure 1 shows a sketch of part of the curve with equation $y=\frac{6}{\left(\mathrm{e}^{x}+2\right)}, x \in \mathbb{R}$
The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation $x=1$

The table below shows corresponding values of x and y for $y=\frac{6}{\left(\mathrm{e}^{x}+2\right)}$

x	0	0.2	0.4	0.6	0.8	1
y	2		1.71830	1.56981	1.41994	1.27165

(a) Complete the table above by giving the missing value of y to 5 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.
(c) Use the substitution $u=\mathrm{e}^{x}$ to show that the area of R can be given by

$$
\int_{a}^{b} \frac{6}{u(u+2)} \mathrm{d} u
$$

where a and b are constants to be determined.
(d) Hence use calculus to find the exact area of R.
[Solutions based entirely on graphical or numerical methods are not acceptable.]

