## Integration: Trapezium Rule - Edexcel Past Exam Questions

1. 

Figure 1


Figure 1 shows the graph of the curve with equation

$$
y=x \mathrm{e}^{2 x}, \quad x \geq 0 .
$$

The finite region $R$ bounded by the lines $x=1$, the $x$-axis and the curve is shown shaded in Figure 1.
(a) Use integration to find the exact value of the area for $R$.
(b) Complete the table with the values of $y$ corresponding to $x=0.4$ and 0.8 .

| $x$ | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y=x \mathrm{e}^{2 x}$ | 0 | 0.29836 |  | 1.99207 |  | 7.38906 |

(c) Use the trapezium rule with all the values in the table to find an approximate value for this area, giving your answer to 4 significant figures.
2. (a) Given that $y=\sec x$, complete the table with the values of $y$ corresponding to $x=\frac{\pi}{16}, \frac{\pi}{8}$ and $\frac{\pi}{4}$.

| $x$ | 0 | $\frac{\pi}{16}$ | $\frac{\pi}{8}$ | $\frac{3 \pi}{16}$ | $\frac{\pi}{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 1 |  |  | 1.20269 |  |

(b) Use the trapezium rule, with all the values for $y$ in the completed table, to obtain an estimate for $\int_{0}^{\frac{\pi}{4}} \sec x \mathrm{~d} x$. Show all the steps of your working and give your answer to 4 decimal places.

The exact value of $\int_{0}^{\frac{\pi}{4}} \sec x \mathrm{~d} x$ is $\ln (1+\sqrt{ } 2)$.
(c) Calculate the \% error in using the estimate you obtained in part (b).
3.

$$
I=\int_{0}^{5} \mathrm{e}^{\sqrt{ }(3 x+1)} \mathrm{d} x
$$

(a) Given that $y=\mathrm{e}^{\vee(3 x+1)}$, copy and complete the table with the values of $y$ corresponding to $x=2,3$ and 4 .

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | $\mathrm{e}^{1}$ | $\mathrm{e}^{2}$ |  |  |  | $\mathrm{e}^{4}$ |

(b) Use the trapezium rule, with all the values of $y$ in the completed table, to obtain an estimate for the original integral $I$, giving your answer to 4 significant figures.
(c) Use the substitution $t=\sqrt{ }(3 x+1)$ to show that $I$ may be expressed as $\int_{a}^{b} k t \mathrm{e}^{t} \mathrm{~d} t$, giving the values of $a, b$ and $k$.
(d) Use integration by parts to evaluate this integral, and hence find the value of $I$ correct to 4 significant figures, showing all the steps in your working.
4.

Figure 3


Figure 3 shows a sketch of the curve with equation $y=(x-1) \ln x, x>0$.
(a) Copy and complete the table with the values of $y$ corresponding to $x=1.5$ and $x=2.5$.

| $x$ | 1 | 1.5 | 2 | 2.5 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 |  | $\ln 2$ |  | $2 \ln 3$ |

Given that $I=\int_{1}^{3}(x-1) \ln x \mathrm{~d} x$,
(b) use the trapezium rule
(i) with values at $y$ at $x=1,2$ and 3 to find an approximate value for $I$ to 4 significant figures,
(ii) with values at $y$ at $x=1,1.5,2,2.5$ and 3 to find another approximate value for $I$ to 4 significant figures.
(c) Explain, with reference to Figure 3, why an increase in the number of values improves the accuracy of the approximation.
(d) Show, by integration, that the exact value of $\int_{1}^{3}(x-1) \ln x \mathrm{~d} x$ is $\frac{3}{2} \ln 3$.
5.


Figure 1
Figure 1 shows part of the curve with equation $y=\sqrt{ }(\tan x)$. The finite region $R$, which is bounded by the curve, the $x$-axis and the line $x=\frac{\pi}{4}$, is shown shaded in Figure 1 .
(a) Given that $y=\sqrt{ }(\tan x)$, copy and complete the table with the values of $y$ corresponding to $x=\frac{\pi}{16}, \frac{\pi}{8}$ and $\frac{3 \pi}{16}$, giving your answers to 5 decimal places.

| $x$ | 0 | $\frac{\pi}{16}$ | $\frac{\pi}{8}$ | $\frac{3 \pi}{16}$ | $\frac{\pi}{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 |  |  |  | 1 |

(3)
(b) Use the trapezium rule with all the values of $y$ in the completed table to obtain an estimate for the area of the shaded region $R$, giving your answer to 4 decimal places.
6.


Figure 1
 the curve and the $x$-axis is shown shaded in Figure 1.
(a) Copy and complete the table below with the values of $y$ corresponding to $x=\frac{\pi}{4}$ and $x=$ $\frac{\pi}{2}$, giving your answers to 5 decimal places.

| $x$ | 0 | $\frac{\pi}{4}$ | $\frac{\pi}{2}$ | $\frac{3 \pi}{4}$ | $\pi$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 |  |  | 8.87207 | 0 |

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region $R$. Give your answer to 4 decimal places.
7.


## Figure 1

Figure 1 shows part of the curve with equation $y=\mathrm{e}^{0.5 x^{2}}$. The finite region $R$, shown shaded in Figure 1, is bounded by the curve, the $x$-axis, the $y$-axis and the line $x=2$.
(a) Copy and complete the table with the values of $y$ corresponding to $x=0.8$ and $x=1.6$.

| $x$ | 0 | 0.4 | 0.8 | 1.2 | 1.6 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | $\mathrm{e}^{0}$ | $\mathrm{e}^{0.08}$ |  | $\mathrm{e}^{0.72}$ |  | $\mathrm{e}^{2}$ |

(1)
(b) Use the trapezium rule with all the values in the table to find an approximate value for the area of $R$, giving your answer to 4 significant figures.
8.


Figure 1
Figure 1 shows the finite region $R$ bounded by the $x$-axis, the $y$-axis and the curve with equation $y=3 \cos \left(\frac{x}{3}\right), 0 \leq x \leq \frac{3 \pi}{2}$.

The table shows corresponding values of $x$ and $y$ for $y=3 \cos \left(\frac{x}{3}\right)$.

| $x$ | 0 | $\frac{3 \pi}{8}$ | $\frac{3 \pi}{4}$ | $\frac{9 \pi}{8}$ | $\frac{3 \pi}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 3 | 2.77164 | 2.12132 |  | 0 |

(a) Copy and complete the table above giving the missing value of $y$ to 5 decimal places.
(b) Using the trapezium rule, with all the values of $y$ from the completed table, find an approximation for the area of $R$, giving your answer to 3 decimal places.
(c) Use integration to find the exact area of $R$.
9.


Figure 1

Figure 1 shows a sketch of the curve with equation $y=x \ln x, x \geq 1$. The finite region $R$, shown shaded in Figure 1, is bounded by the curve, the $x$-axis and the line $x=4$.

The table shows corresponding values of $x$ and $y$ for $y=x \ln x$.

| $x$ | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 | 0.608 |  |  | 3.296 | 4.385 | 5.545 |

(a) Copy and complete the table with the values of $y$ corresponding to $x=2$ and $x=2.5$, giving your answers to 3 decimal places.
(b) Use the trapezium rule, with all the values of $y$ in the completed table, to obtain an estimate for the area of $R$, giving your answer to 2 decimal places.
(c) (i) Use integration by parts to find $\int x \ln x \mathrm{~d} x$.
(ii) Hence find the exact area of $R$, giving your answer in the form $\frac{1}{4}(a \ln 2+b)$, where $a$ and $b$ are integers.
10.


Figure 1
Figure 1 shows part of the curve with equation $y=\sqrt{ }\left(0.75+\cos ^{2} x\right)$. The finite region $R$, shown shaded in Figure 1, is bounded by the curve, the $y$-axis, the $x$-axis and the line with equation $x=\frac{\pi}{3}$.
(a) Copy and complete the table with values of $y$ corresponding to $x=\frac{\pi}{6}$ and $x=\frac{\pi}{4}$.

| $x$ | 0 | $\frac{\pi}{12}$ | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 1.3229 | 1.2973 |  |  | 1 |

(b) Use the trapezium rule
(i) with the values of $y$ at $x=0, x=\frac{\pi}{6}$ and $x=\frac{\pi}{3}$ to find an estimate of the area of $R$.

Give your answer to 3 decimal places.
(ii) with the values of $y$ at $x=0, x=\frac{\pi}{12}, x=\frac{\pi}{6}, x=\frac{\pi}{4}$ and $x=\frac{\pi}{3}$ to find a further estimate of the area of $R$. Give your answer to 3 decimal places.
11.

$$
I=\int_{2}^{5} \frac{1}{4+\sqrt{ }(x-1)} \mathrm{d} x
$$

(a) Given that $y=\frac{1}{4+\sqrt{ }(x-1)}$, copy and complete the table below with values of $y$ corresponding to $x=3$ and $x=5$. Give your values to 4 decimal places.

| $x$ | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| $y$ | 0.2 |  | 0.1745 |  |

(b) Use the trapezium rule, with all of the values of $y$ in the completed table, to obtain an estimate of $I$, giving your answer to 3 decimal places.
(c) Using the substitution $x=(u-4)^{2}+1$, or otherwise, and integrating, find the exact value of $I$.
12.


Figure 2
Figure 2 shows a sketch of the curve with equation $y=x^{3} \ln \left(x^{2}+2\right), x \geq 0$.
The finite region $R$, shown shaded in Figure 2, is bounded by the curve, the $x$-axis and the line $x=\sqrt{ } 2$.

The table below shows corresponding values of $x$ and $y$ for $y=x^{3} \ln \left(x^{2}+2\right)$.

| $x$ | 0 | $\frac{\sqrt{ } 2}{4}$ | $\frac{\sqrt{ } 2}{2}$ | $\frac{3 \sqrt{ } 2}{4}$ | $\sqrt{ } 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 0 |  | 0.3240 |  | 3.9210 |

(a) Complete the table above giving the missing values of $y$ to 4 decimal places.
(b) Use the trapezium rule, with all the values of $y$ in the completed table, to obtain an estimate for the area of $R$, giving your answer to 2 decimal places.
(c) Use the substitution $u=x^{2}+2$ to show that the area of $R$ is

$$
\frac{1}{2} \int_{2}^{4}(u-2) \ln u \mathrm{~d} u
$$

(d) Hence, or otherwise, find the exact area of $R$.
13.


Figure 3
Figure 3 shows a sketch of the curve with equation $y=\frac{2 \sin 2 x}{(1+\cos x)}, 0 \leq x \leq \frac{\pi}{2}$.
The finite region $R$, shown shaded in Figure 3, is bounded by the curve and the $x$-axis.
The table below shows corresponding values of $x$ and $y$ for $y=\frac{2 \sin 2 x}{(1+\cos x)}$.

| x | 0 | $\frac{\pi}{8}$ | $\frac{\pi}{4}$ | $\frac{3 \pi}{8}$ | $\frac{\pi}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 0 |  | 1.17157 | 1.02280 | 0 |

(a) Complete the table above giving the missing value of $y$ to 5 decimal places.
(b) Use the trapezium rule, with all the values of $y$ in the completed table, to obtain an estimate for the area of $R$, giving your answer to 4 decimal places.
(c) Using the substitution $u=1+\cos x$, or otherwise, show that

$$
\begin{equation*}
\int \frac{2 \sin 2 x}{(1+\cos x)} d x=4 \ln (1+\cos x)-4 \cos x+k \tag{5}
\end{equation*}
$$

where $k$ is a constant.
(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.

