

Integration: Trapezium Rule - Edexcel Past Exam Questions

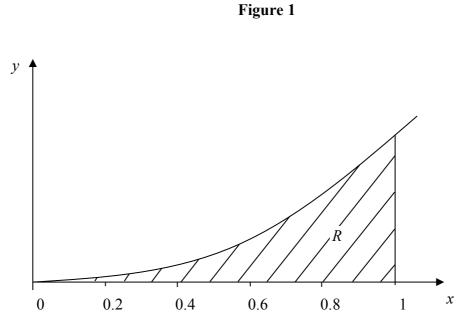


Figure 1 shows the graph of the curve with equation

$$y = xe^{2x}, \qquad x \ge 0.$$

The finite region *R* bounded by the lines x = 1, the *x*-axis and the curve is shown shaded in Figure 1.

- (*a*) Use integration to find the exact value of the area for *R*.
- (b) Complete the table with the values of y corresponding to x = 0.4 and 0.8.

x	0	0.2	0.4	0.6	0.8	1
$y = xe^{2x}$	0	0.29836		1.99207		7.38906

(c) Use the trapezium rule with all the values in the table to find an approximate value for this area, giving your answer to 4 significant figures. (4)

June 05 Q5

(5)

(1)

2. (a) Given that $y = \sec x$, complete the table with the values of y corresponding to $x = \frac{\pi}{16}, \frac{\pi}{8}$

and
$$\frac{-}{4}$$
.

x	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$
у	1			1.20269	

(2)

(b) Use the trapezium rule, with all the values for y in the completed table, to obtain an estimate for $\int_{0}^{\frac{\pi}{4}} \sec x \, dx$. Show all the steps of your working and give your answer to 4 decimal places. (3)

The exact value of $\int_{0}^{\frac{\pi}{4}} \sec x \, dx$ is $\ln(1 + \sqrt{2})$.

(c) Calculate the % error in using the estimate you obtained in part (b). (2)

Jan 06 Q2

$$I = \int_0^5 \mathrm{e}^{\sqrt{3x+1}} \, \mathrm{d}x \, .$$

(a) Given that $y = e^{\sqrt{3x+1}}$, copy and complete the table with the values of y corresponding to x = 2, 3 and 4.

x	0	1	2	3	4	5
У	e ¹	e ²				e ⁴
						(2)

- (b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the original integral *I*, giving your answer to 4 significant figures. (3)
- (c) Use the substitution $t = \sqrt{3x + 1}$ to show that *I* may be expressed as $\int_{a}^{b} kte^{t} dt$, giving the values of *a*, *b* and *k*. (5)
- (*d*) Use integration by parts to evaluate this integral, and hence find the value of *I* correct to 4 significant figures, showing all the steps in your working.

(5) Jan 07 Q8

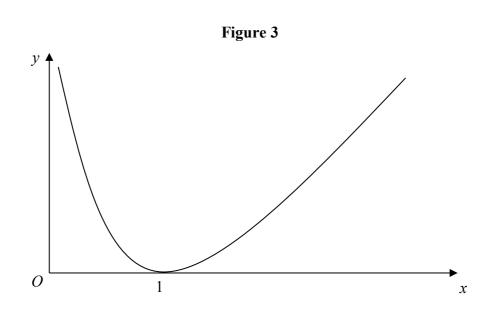


Figure 3 shows a sketch of the curve with equation $y = (x - 1) \ln x$, x > 0.

(a) Copy and complete the table with the values of y corresponding to x = 1.5 and x = 2.5.

x	1	1.5	2	2.5	3
у	0		ln 2		2 ln 3
	•				•

Given that $I = \int_{1}^{3} (x-1) \ln x \, dx$,

- (*b*) use the trapezium rule
 - (i) with values at y at x = 1, 2 and 3 to find an approximate value for I to 4 significant figures,
 - (ii) with values at y at x = 1, 1.5, 2, 2.5 and 3 to find another approximate value for I to 4 significant figures. (5)
- (c) Explain, with reference to Figure 3, why an increase in the number of values improves the accuracy of the approximation. (1)
- (d) Show, by integration, that the exact value of $\int_{1}^{3} (x-1) \ln x \, dx$ is $\frac{3}{2} \ln 3$. (6)

June 06 Q6

www.naikermaths.com

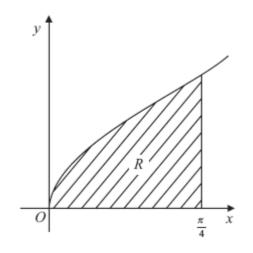


Figure 1 shows part of the curve with equation $y = \sqrt{(\tan x)}$. The finite region *R*, which is bounded by the curve, the *x*-axis and the line $x = \frac{\pi}{4}$, is shown shaded in Figure 1.

(a) Given that $y = \sqrt{(\tan x)}$, copy and complete the table with the values of y corresponding to $x = \frac{\pi}{16}$, $\frac{\pi}{8}$ and $\frac{3\pi}{16}$, giving your answers to 5 decimal places.

x	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$
У	0				1

(3)

(*b*) Use the trapezium rule with all the values of *y* in the completed table to obtain an estimate for the area of the shaded region *R*, giving your answer to 4 decimal places.(4)

June 07 Q7(edited)

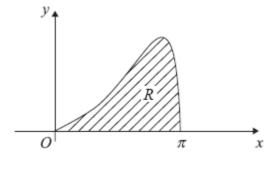


Figure 1

The curve shown in Figure 1 has equation $e^x \sqrt{(\sin x)}$, $0 \le x \le \pi$. The finite region *R* bounded by the curve and the *x*-axis is shown shaded in Figure 1.

(a) Copy and complete the table below with the values of y corresponding to $x = \frac{\pi}{4}$ and x =

 $\frac{\pi}{2}$, giving your answers to 5 decimal places.

	x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
y 0 8.87207 0	у	0			8.87207	0

(2)

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region *R*. Give your answer to 4 decimal places. (4)

Jan 08 Q1

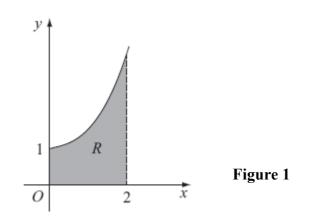


Figure 1 shows part of the curve with equation $y = e^{0.5x^2}$. The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis, the *y*-axis and the line x = 2.

x	0	0.4	0.8	1.2	1.6	2
У	e ⁰	e ^{0.08}		e ^{0.72}		e ²
						(1)

- (a) Copy and complete the table with the values of y corresponding to x = 0.8 and x = 1.6.
- (b) Use the trapezium rule with all the values in the table to find an approximate value for the area of *R*, giving your answer to 4 significant figures.(3)

June 08 Q1

7.



Figure 1 shows the finite region *R* bounded by the *x*-axis, the *y*-axis and the curve with equation $y = 3 \cos\left(\frac{x}{3}\right), 0 \le x \le \frac{3\pi}{2}$.

The table shows corresponding values of x and y for $y = 3 \cos\left(\frac{x}{3}\right)$.

x	0	$\frac{3\pi}{8}$	$\frac{3\pi}{4}$	$\frac{9\pi}{8}$	$\frac{3\pi}{2}$
у	3	2.77164	2.12132		0

- (a) Copy and complete the table above giving the missing value of y to 5 decimal places.
- (b) Using the trapezium rule, with all the values of y from the completed table, find an approximation for the area of R, giving your answer to 3 decimal places. (4)
- (c) Use integration to find the exact area of *R*.

June 09 Q2

(1)

(3)

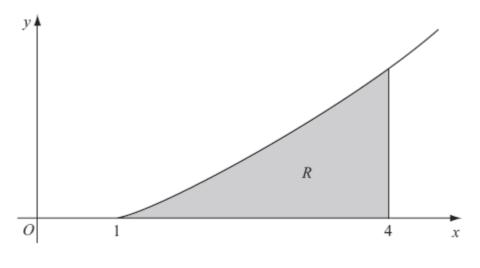


Figure 1 shows a sketch of the curve with equation $y = x \ln x$, $x \ge 1$. The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis and the line x = 4.

The table shows corresponding values of *x* and *y* for $y = x \ln x$.

x	1	1.5	2	2.5	3	3.5	4
У	0	0.608			3.296	4.385	5.545

- (a) Copy and complete the table with the values of y corresponding to x = 2 and x = 2.5, giving your answers to 3 decimal places. (2)
- (b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places. (4)

(c) (i) Use integration by parts to find $\int x \ln x \, dx$.

(ii) Hence find the exact area of *R*, giving your answer in the form $\frac{1}{4}(a \ln 2 + b)$, where *a* and *b* are integers. (7)

Jan10 Q2

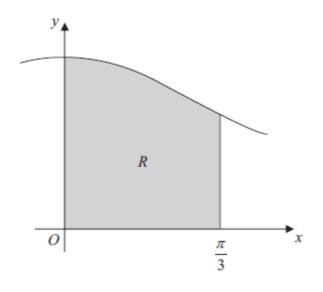


Figure 1

Figure 1 shows part of the curve with equation $y = \sqrt{(0.75 + \cos^2 x)}$. The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis and the line with equation $x = \frac{\pi}{3}$.

(a) Copy and complete the table with values of y corresponding to $x = \frac{\pi}{6}$ and $x = \frac{\pi}{4}$.

x	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	
у	1.3229	1.2973			1	
						(2

(b) Use the trapezium rule

(i) with the values of y at x = 0, $x = \frac{\pi}{6}$ and $x = \frac{\pi}{3}$ to find an estimate of the area of R.

Give your answer to 3 decimal places.

(ii) with the values of y at x = 0, $x = \frac{\pi}{12}$, $x = \frac{\pi}{6}$, $x = \frac{\pi}{4}$ and $x = \frac{\pi}{3}$ to find a further estimate (6)

of the area of R. Give your answer to 3 decimal places.

June 10 Q1

11.
$$I = \int_{2}^{5} \frac{1}{4 + \sqrt{(x-1)}} dx$$

(a) Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, copy and complete the table below with values of y corresponding to x = 3 and x = 5. Give your values to 4 decimal places.

x	2	3	4	5
У	0.2		0.1745	

(b) Use the trapezium rule, with all of the values of y in the completed table, to obtain an estimate of I, giving your answer to 3 decimal places. (4)

(c) Using the substitution $x = (u - 4)^2 + 1$, or otherwise, and integrating, find the exact value of *I*. (8)

Jan 11 Q7

(2)

12.

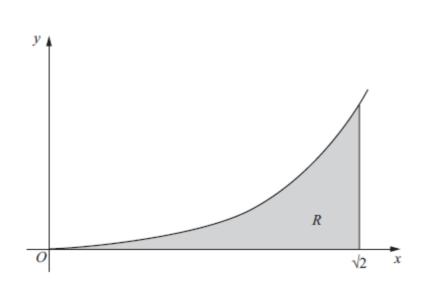


Figure 2

Figure 2 shows a sketch of the curve with equation $y = x^3 \ln (x^2 + 2)$, $x \ge 0$.

The finite region *R*, shown shaded in Figure 2, is bounded by the curve, the *x*-axis and the line $x = \sqrt{2}$.

The table below shows corresponding values of x and y for $y = x^3 \ln (x^2 + 2)$.

x	0	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{3\sqrt{2}}{4}$	$\sqrt{2}$
У	0		0.3240		3.9210

- (a) Complete the table above giving the missing values of y to 4 decimal places. (2)
- (b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 2 decimal places. (3)
- (c) Use the substitution $u = x^2 + 2$ to show that the area of *R* is

$$\frac{1}{2}\int_{2}^{4}(u-2)\ln u \, \mathrm{d}u.$$

(4)

(6)

(d) Hence, or otherwise, find the exact area of R.

June 11 Q4

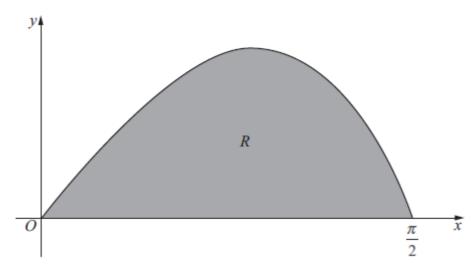


Figure 3 shows a sketch of the curve with equation $y = \frac{2 \sin 2x}{(1 + \cos x)}, \ 0 \le x \le \frac{\pi}{2}.$

The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

The table below shows corresponding values of x and y for $y = \frac{2 \sin 2x}{(1 + \cos x)}$.

X	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$
у	0		1.17157	1.02280	0

- (a) Complete the table above giving the missing value of y to 5 decimal places. (1)
- (b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places. (3)
- (c) Using the substitution $u = 1 + \cos x$, or otherwise, show that

$$\int \frac{2\sin 2x}{(1+\cos x)} \, \mathrm{d}x = 4 \ln (1+\cos x) - 4 \cos x + k,$$

where *k* is a constant.

(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.(3)

Jan 12 Q6

(5)