

Trigonometric Functions 2 (Sec, cosec & cot) - Edexcel Past Exam Questions

1. Solve, for $0 \le \theta \le 180^\circ$,

 $2 \cot^2 3\theta = 7 \operatorname{cosec} 3\theta - 5.$

Give your answers in degrees to 1 decimal place. (10) Jan 12 Q5

2. (i) (a) Show that $2 \tan x - \cot x = 5 \operatorname{cosec} x$ may be written in the form

$$a\cos^2 x + b\cos x + c = 0$$

stating the values of the constants a, b and c. (4)

(*b*) Hence solve, for $0 \le x < 2\pi$, the equation

 $2 \tan x - \cot x = 5 \operatorname{cosec} x$

giving your answers to 3 significant figures. (4)

(ii) Show that

$$\tan \theta + \cot \theta \equiv \lambda \operatorname{cosec} 2\theta, \quad \theta = \frac{n\pi}{2}, \quad n \in \mathbb{Z}$$

stating the value of the constant λ .

(4) June 14(R) Q3

3. Given that

tan $\theta^{\circ} = p$, where *p* is a constant, $p \neq \pm 1$,

use standard trigonometric identities, to find in terms of p,

Write each answer in its simplest form.		June 15 Q1
** 7		
(<i>c</i>)	$\cot(\theta-45)^{\circ}$.	(2)
(<i>b</i>)	$\cos \theta^{\circ}$,	(2)
(<i>a</i>)	$\tan 2\theta^{\circ}$,	(2)

4. (a) For $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, sketch the graph of y = g(x) where

$$g(x) = \arcsin x, -1 \le x \le 1.$$
(2)

(b) Find the exact value of x for which

$$3g(x+1) + \pi = 0.$$
 (3)

June 16 Q7