Trigonometric Functions 2 (Sec, cosec \& cot) - Edexcel Past Exam Questions

1. Solve, for $0 \leq \theta \leq 180^{\circ}$,

$$
\begin{equation*}
2 \cot ^{2} 3 \theta=7 \operatorname{cosec} 3 \theta-5 . \tag{10}
\end{equation*}
$$

Give your answers in degrees to 1 decimal place.
Jan 12 Q5
2. (i) (a) Show that $2 \tan x-\cot x=5 \operatorname{cosec} x$ may be written in the form

$$
a \cos ^{2} x+b \cos x+c=0
$$

stating the values of the constants a, b and c.
(b) Hence solve, for $0 \leq x<2 \pi$, the equation

$$
2 \tan x-\cot x=5 \operatorname{cosec} x
$$

giving your answers to 3 significant figures.
(ii) Show that

$$
\tan \theta+\cot \theta \equiv \lambda \operatorname{cosec} 2 \theta, \quad \theta=\frac{n \pi}{2}, \quad n \in \mathbb{Z}
$$

stating the value of the constant λ.
3. Given that

$$
\tan \theta^{\circ}=p, \text { where } p \text { is a constant, } p \neq \pm 1,
$$

use standard trigonometric identities, to find in terms of p,
(a) $\tan 2 \theta^{\circ}$,
(b) $\cos \theta^{\circ}$,
(c) $\cot (\theta-45)^{\circ}$.

Write each answer in its simplest form.
4. (a) For $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$, sketch the graph of $y=g(x)$ where

$$
\begin{equation*}
\mathrm{g}(x)=\arcsin x,-1 \leq x \leq 1 . \tag{2}
\end{equation*}
$$

(b) Find the exact value of x for which

$$
\begin{equation*}
3 \mathrm{~g}(x+1)+\pi=0 \tag{3}
\end{equation*}
$$

