Name:

Pure

Mathematics 2

Advanced Level

Practice Paper M11

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100 .
- The marks for each question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Question 1

Prove by contradiction that $\sqrt{3}$ is irrational.

Question 2

Figure 1
The shape shown in Figure 1 is a pattern for a pendant. It consists of a sector $O A B$ of

$$
A O B=\frac{\pi}{3}
$$

a circle centre O, of radius 6 cm , and angle
3. The circle C, inside the sector, touches the two straight edges, $O A$ and $O B$, and the $\operatorname{arc} A B$ as shown.

Find
(a) the area of the sector $O A B$,
(b) the radius of the circle C.

The region outside the circle C and inside the sector $O A B$ is shown shaded in Figure 1.
(c) Find the area of the shaded region.

Question 3

The second and third terms of a geometric series are 192 and 144 respectively.
For this series, find
(a) the common ratio,
(b) the first term,
(c) the sum to infinity,
(d) the smallest value of n for which the sum of the first n terms of the series exceeds 1000 .

Question 4

$\mathrm{f}(x)=\frac{4 x-5}{(2 x+1)(x-3)}-\frac{2 x}{x^{2}-9}, \quad x \neq \pm 3, x \neq-\frac{1}{2}$
(a) Show that
$\mathrm{f}(x)=\frac{5}{(2 x+1)(x+3)}$
The curve C has equation $y=f(x)$. The point $P\left(-1,-\frac{5}{2}\right)$ lies onC.
(b) Find an equation of the normal to C at P.

Question 5

Find the gradient of the curve with equation
$\ln y=2 x \ln x, \quad x>0, y>0$
at the point on the curve where $x=2$. Give your answer as an exact value.
(Total 7 marks)

Question 6

Figure 1
A hollow hemispherical bowl is shown in Figure 1. Water is flowing into the bowl. When the depth of the water is $h \mathrm{~m}$, the volume $V \mathrm{~m}^{3}$ is given by
$V=\frac{1}{12} \pi \cdot h^{2}(3-4 h), \quad 0 \leqslant h \leqslant 0.25$
(a) Find, in terms of $\pi, \frac{\mathrm{d} V}{\mathrm{~d} h}$ when $h=0.1$

Water flows into the bowl at a rate of $\frac{\pi}{800} \mathrm{~m}^{3} \mathrm{~s}^{-1}$.
(b) Find the rate of change of h, in $\mathrm{m} \mathrm{s}^{-1}$, when $h=0.1$

Question 7

Figure 2
Figure 2 shows a sketch of the curve with equation $y=x^{3} \ln \left(x^{2}+2\right), x \geqslant 0$. The finite region R, shown shaded in Figure 2, is bounded by the curve, the x-axis and the line $x=\sqrt{ } 2$.
(a) Use the substitution $u=x^{2}+2$ to show that the area of R is
$\frac{1}{2} \int_{2}^{4}(u-2) \ln u \mathrm{~d} u$
(b) Hence, or otherwise, find the exact area of R.

Question 8

(a) Prove that

$$
\begin{equation*}
\frac{1}{\sin 2 \theta}-\frac{\cos 2 \theta}{\sin 2 \theta}=\tan \theta, \quad \theta \neq 90 n^{\circ}, n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

(b) Hence, or otherwise,
(i) show that $\tan 15^{\circ}=2-\sqrt{ } 3$,
(ii) solve, for $0<x<360^{\circ}$,

$$
\begin{equation*}
\operatorname{cosec} 4 x-\cot 4 x=1 \tag{5}
\end{equation*}
$$

(Total 12 marks)

Question 9

(a) Express $2 \cos 3 x-3 \sin 3 x$ in the form $R \cos (3 x+\alpha)$, where R and α are constants, $R>0$ and

$$
0<\alpha<\frac{\pi}{2} \text {. Give your answers to } 3 \text { significant figures. }
$$

$\mathrm{f}(x)=\mathrm{e}^{2 x} \cos 3 x$
(b) Show that $\mathrm{f}^{\prime}(x)$ can be written in the form

$$
\mathrm{f}^{\prime}(x)=R \mathrm{e}^{2 x} \cos (3 x+\alpha)
$$

where R and α are the constants found in part (a).
(c) Hence, or otherwise, find the smallest positive value of x for which the curve with equation $y=\mathrm{f}(x)$ has a turning point.

Question 10

Figure 3
Figure 3 shows part of the curve C with parametric equations

$$
x=\tan \theta, \quad y=\sin \theta, \quad 0 \leqslant \theta<\frac{\pi}{2}
$$

The point P lies on C and has coordinates $\left(\sqrt{3}, \frac{1}{2} \sqrt{3}\right)$
(a) Find the value of θ at the point P.

The line I is a normal to C at P. The normal cuts the x-axis at the point Q.
(b) Show that Q has coordinates $(k \sqrt{ } 3,0)$, giving the value of the constant k.

Question 11

The mass, m grams, of a leaf t days after it has been picked from a tree is given by

$$
m=p e^{-k t}
$$

where k and p are positive constants.
When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.
(a) Write down the value of p.
(b) Show that

$$
\frac{\mathrm{d} m}{\mathrm{~d} t}=-0.6 \ln 3
$$

(c) Find the value of t when

