Name:

Total Marks:

Pure

Mathematics 2

Advanced Level

Practice Paper M11

Time: 2 hours

Information for Candidates

- This practice paper is an adapted legacy old paper for the Edexcel GCE A Level Specifications
- There are 11 questions in this question paper
- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets.
- Full marks may be obtained for answers to ALL questions

Advice to candidates:

- You must ensure that your answers to parts of questions are clearly labelled.
- You must show sufficient working to make your methods clear to the Examiner
- Answers without working may not gain full credit

Prove by contradiction that $\sqrt{3}$ is irrational.

(Total 4 marks)

Question 2

Figure 1

The shape shown in Figure 1 is a pattern for a pendant. It consists of a sector OAB of

$$AOB = \frac{\pi}{2}$$

a circle centre *O*, of radius 6 cm, and angle ³. The circle *C*, inside the sector, touches the two straight edges, *OA* and *OB*, and the arc *AB* as shown.

Find

(a)	the area of the sector OAB,	(2)
(b)	the radius of the circle C.	(3)

The region outside the circle C and inside the sector OAB is shown shaded in Figure 1.

(c)	Find the area of the shaded region.	(2)
		(Total 7 marks)

The second and third terms of a geometric series are 192 and 144 respectively.

Fo	r this series, find			
(a)	the common ratio,	(2)		
(b)	the first term,	(2)		
(c)	the sum to infinity,	(2)		
(d)	the smallest value of <i>n</i> for which the sum of the first <i>n</i> terms of the series exceeds 1000.	(4)		
	(Total 10 marks)			

Question 4

$$f(x) = \frac{4x-5}{(2x+1)(x-3)} - \frac{2x}{x^2-9}, \qquad x \neq \pm 3, \ x \neq -\frac{1}{2}$$

(a) Show that

$$f(x) = \frac{5}{(2x+1)(x+3)}$$
(5)

$$P\left(-1,-\frac{5}{2}\right)$$
 lies on C.

The curve *C* has equation y = f(x). The point

(b) Find an equation of the normal to C at P.

(Total 13 marks)

(8)

Find the gradient of the curve with equation

$$\ln y = 2x \ln x, \quad x > 0, \ y > 0$$

at the point on the curve where x = 2. Give your answer as an exact value.

(7) (Total 7 marks)

Question 6

Figure 1

A hollow hemispherical bowl is shown in Figure 1. Water is flowing into the bowl. When the depth of the water is h m, the volume V m³ is given by

$$V = \frac{1}{12} \pi h^2 (3 - 4h), \qquad 0 \le h \le 0.25$$

(a) Find, in terms of
$$\pi$$
, $\frac{\mathrm{d}V}{\mathrm{d}h}$ when $h = 0.1$

Water flows into the bowl at a rate of 800

(b) Find the rate of change of *h*, in m s⁻¹, when h = 0.1

(2) (Total 6 marks)

 $\frac{\pi}{m^3 s^{-1}}$.

(4)

Figure 2 shows a sketch of the curve with equation $y = x^3 \ln(x^2 + 2)$, $x \ge 0$. shown shaded in Figure 2, is bounded by the curve, the *x*-axis and the line $x = \sqrt{2}$.

(a) Use the substitution $u = x^2 + 2$ to show that the area of *R* is

$$\frac{1}{2} \int_{2}^{4} (u-2) \ln u \, \mathrm{d}u \tag{4}$$

(b) Hence, or otherwise, find the exact area of *R*.

(Total 10 marks)

(6)

Question 8

(a) Prove that

$$\frac{1}{\sin 2\theta} - \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90n^{\circ}, \ n \in \mathbb{Z}$$
⁽⁴⁾

(b) Hence, or otherwise,

(i) show that $\tan 15^\circ = 2 - \sqrt{3}$,

(ii) solve, for $0 < x < 360^{\circ}$,

 $\operatorname{cosec} 4x - \operatorname{cot} 4x = 1$

(Total 12 marks)

(5)

(3)

(a) Express $2\cos 3x - 3\sin 3x$ in the form $R\cos (3x + \alpha)$, where R and α are constants, R > 0 and

$$0 < \alpha < \frac{\pi}{2}$$
. Give your answers to 3 significant figures. (4)

$$f(x) = e^{2x} \cos 3x$$

(b) Show that f'(x) can be written in the form

$$f'(x) = R e^{2x} \cos(3x + \alpha)$$

where *R* and α are the constants found in part (a).

(c) Hence, or otherwise, find the smallest positive value of x for which the curve with equation y = f(x) has a turning point. (3)

(Total 12 marks)

(5)

Question 10

Figure 3 shows part of the curve C with parametric equations

 $x = \tan \theta$, $y = \sin \theta$, $0 \le \theta < \frac{\pi}{2}$

The point *P* lies on *C* and has coordinates $(\sqrt{3}, \frac{1}{2}\sqrt{3})$

(a) Find the value of θ at the point *P*.

The line *I* is a normal to *C* at *P*. The normal cuts the *x*-axis at the point *Q*.

(b) Show that Q has coordinates ($k \sqrt{3}$, 0), giving the value of the constant k.

(Total 8 marks)

(2)

(6)

The mass, *m* grams, of a leaf *t* days after it has been picked from a tree is given by

 $m = pe^{-kt}$

where *k* and *p* are positive constants.

When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.

(a) Write down the value of *p*.

$$k = \frac{1}{4}\ln 3. \tag{4}$$

(b) Show that

$$\frac{\mathrm{d}m}{\mathrm{d}t} = -0.6\ln 3.$$

(c) Find the value of t when

(6)

(1)

(Total 11 marks)

TOTAL FOR PAPER IS 100 MARKS