Arc Length and Areas of Sectors 2 - Edexcel Past Exam Questions MARK SCHEME

Question 1

Question number	Scheme	Marks
(a)	$r \theta=6 \times 0.95,=5.7 \quad(\mathrm{~cm})$	$\mathrm{M} 1, \mathrm{~A} 1$ (2)
(b)	$\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 6^{2} \times 0.95,=17.1\left(\mathrm{~cm}^{2}\right)$	M1, A1 ${ }_{\text {(2) }}$
(c)	Let $A D=x$ then $\frac{x}{\sin 0.95}=\frac{6}{\sin 1.24}$ so $x=5.16$	
	$x=3 / \cos 0.95$ OR so $x=3 / \sin 0.62$ so $x=5.16$ *	M1 A1 (2)
(d)	OR $x^{2}=6^{2}+x^{2}-12 x \cos 0.95$ leading to $x=\begin{gathered}\text {, so } x=5.16 \\ \text { Perimeter }=\text { ' } 5.7 \text { ' }+5.16+6-5.16=\text { " } 11.7 \text { " }\end{gathered} \quad$ or $6+$ their 5.7 *	M1A1 ft (2)
(e)	$\begin{aligned} & \text { Area of triangle } A B D=\frac{1}{2} \times 6 \times 5.16 \times \sin 0.95=12.6 \text { or } \\ & \frac{1}{2} \times 6 \times 3 \times \tan 0.95=12.6(1 / 2 \text { base } \mathrm{x} \text { height }) \text { or } \frac{1}{2} \times 5.16 \times 5.16 \times \sin 1.24=12.6 \\ & \text { So Area of } R=' 17.1^{\prime}-^{\prime} 12.6^{\prime}=4.5 \end{aligned}$	M1 A1
		M1 A1 ${ }^{\text {(4) }}$
		12
Notes	(a) M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula. Al: Does not need units	
	(b) M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula. A1: Does not need units	
	(c) M1: Needs complete correct trig method to achieve $x=$ May have worked in degrees, using 54.4 degrees and 71.1 degrees	
	Using angles of triangle sum to 360 degrees is not correct method so is M0 Al: accept answers which round to 5.16 (NB This is given answer)	
	(d) M1: Accept answer only as implying method, or just 6+5.7	
	Al : can be scored even following wrong answer to part (c) (e) M1: needs complete method for area of triangle $A B D$ not $A B C$ A1: Accept awrt 12.6 (If area of triangle is not evaluated or is given as 12.5 (truncated)	
Alternative For part (e)	Finds area of segment and area of triangle $B D C$ by correct methods M1	
	Uses area of segment + area of triangle $B D C$,to obtain 4.5 (not 4.6) M1, A1 NB Just finding area of segment is M0	

Question 2

Question 3

Question 4

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline (a)

(b) \& \begin{tabular}{l}
Way 1: $10^{2}=7^{2}+13^{2}-2 \times 7 \times 13 \cos \theta$ or $\cos \theta=\frac{7^{2}+13^{2}-10^{2}}{2 \times 7 \times 13}$ $\cos \theta=\frac{59}{91}$ or $\cos \theta=\frac{7^{2}+13^{2}-10^{2}}{2 \times 7 \times 13}$ or $\cos \theta=0.6483$ or 0.8644 $(\theta=0.8653789549 \ldots)=0.865$ * (to 3 dp)

Way 2: Uses $\cos \theta=\frac{x}{7}$, where $7^{2}-x^{2}=10^{2}-(13-x)^{2}$ and finds $x \quad(=59 / 13)$ $\cos \theta=\frac{59}{91}$ and $(\theta=0.8653789549 \ldots)=0.865^{*}($ to 3 dp$)-$ as in Way 1

Area triangle $A B C=\frac{1}{2} \times 13 \times 7 \sin 0.865$ or $\frac{1}{2} \times 13 \times 7 \sin 49.6$ or $20 \sqrt{3}$

Area sector $A B D=\frac{1}{2} \times 7^{2} \times 0.865$ or $\frac{49.6}{360} \times \pi \times 7^{2}$

$=34.6$ (triangle) or 21.2 (Sector)

Area of $S=\frac{1}{2} \times 13 \times 7 \sin 0.865-\frac{1}{2} \times 7^{2} \times 0.865 \quad(=13.4)$

(Amount of seed =) $13.4 \times 50=670 \mathrm{~g}$ or 680 g (need one of these two answers)

 \&

A1 o.e

A1* cso

(3)

M1

A1, A1

(3)

M1

M1

A1

M1 A1

M1 A1

Total 10
\end{tabular}

\hline \& \multicolumn{2}{|l|}{Notes for Question}

\hline (a)

(b) \& \begin{tabular}{l}
M1: use correct cosine formula in any form A1: give a value for $\cos \theta$ NB $\cos \theta=\frac{7^{2}+13^{2}-10^{2}}{2 \times 7 \times 13}$ earns M1A1

A1: deduce and state the printed answer $\theta=0.865$

M1: Uses Correct method for area of the correct triangle i.e. $A B C$

M1: Uses Correct method for the area of the sector

A1: This is earned for one of the correct answers. May be implied if these ans calculated but the final answer is correct with no errors (or shaded area is 13.4

M1: Their area of Triangle $A B C$ - Area of Sector (may have $k r^{2} \theta$ but not $k \theta$)

A1: Correct expression or awrt 13.4 or 13.5 (may be implied by final answe

M1: Multiply their previous answer by 50

A1: 670 g or 680 g (There is an argument for rounding answer up to provide

 \&

ers are not or13.5)

ough seed)
\end{tabular}

\hline \multicolumn{3}{|l|}{$$
\text { N.B. } \begin{aligned}
\left(\frac{1}{2} \times 13 \times 7 \sin 0.865-\frac{1}{2} \times 7^{2} \times 0.865\right) \times 50=670 \text { or } 680 \text { earns full marks } \\
\left(\frac{1}{2} \times 13 \times 7 \sin 0.865-\frac{1}{2} \times 7^{2} \times 0.865\right) \times 50=\text { awrt } 670 \text { or } 680 \text { just loses last mark } \\
\left(\frac{1}{2} \times 13 \times 7 \sin 0.865-\frac{1}{2} \times 7^{2} \times 0.865\right) \times 50=\text { wrong answer M1M1A0M1A1M1A0 }
\end{aligned}
$$}

\hline
\end{tabular}

Question 5

Question Number	Scheme		Marks
(a)	Area $B D E=\frac{1}{2}(5)^{2}(1.4)$	M1: Use of the correct formula or method for the area of the sector	M1A1
	$=17.5\left(\mathrm{~cm}^{2}\right)$	A1: 17.5 oe	
			[2]
(b)	Parts (b) and (c) can be marked together		
	$6.1^{2}=5^{2}+7.5^{2}-(2 \times 5 \times 7.5 \cos D B C) \quad$ or $\cos D B C=\frac{5^{2}+7.5^{2}-6.1^{2}}{2 \times 5 \times 7.5}$ (or equivalent)		M1
	M1: A correct statement involving the angle $D B C$		
	Angle $D B C=0.943201 \ldots$	awrt 0.943	A1
	Note that work for (b) may be seen on the diagram or in part (c)		
			[2]
(c)	Note that candidates may work in degrees in (c) (Angle $D B C=54.04 \ldots$ degrees)		
	Area $C B D=\frac{1}{2} 5(7.5) \sin (0.943)$		
	Angle $E B A=\pi-1.4-$ " 0.943 " (Maybe seen on the diagram)	Area $C B D=\frac{1}{2} 5(7.5) \sin$ (their 0.943) or awrt 15.2. (Note area of $C B D=15.177 \ldots$) A correct method for the area of triangle $C B D$ which can be implied by awrt 15.2	M1
	$\pi-1.4 \text { - "their } 0.943 \text { " }$ A value for angle $E B A$ of awrt 0.8 (from $0.7985926536 \ldots$ or $0.7983916536 \ldots$) or value for angle $E B A$ of ($1.74159 \ldots$ - their angle $D B C$) would imply this mark.		M1
	$A B=5 \cos \left(\pi-1.4-" 0.943^{\prime \prime}\right)$ or $A E=5 \sin \left(\pi-1.4-" 0.943^{\prime \prime}\right)$		
		$\begin{gathered} A B=5 \cos (\pi-1.4-\text { their } 0.943) \\ A B=5 \cos (0.79859 \ldots)=3.488577938 \ldots \\ \text { Allow M1 for } A B=\text { awrt } 3.49 \\ \text { Or } \\ A E=5 \sin (\pi-1.4-\text { their } 0.943) \\ A E=5 \sin (0.79859 \ldots)=3.581874365688 \ldots \\ \text { Allow M1 for } A E=\text { awrt } 3.58 \\ \text { It must be clear that } \pi-1.4-\text { " } 0.943 \text { " is } \\ \text { being used for angle EBA. } \\ \text { Note that some candidates use the sin } \\ \text { rule here but it must be used correctly - } \\ \text { do not allow mixing of degrees and } \\ \text { radians. } \end{gathered}$	M1
	Area $E A B=\frac{1}{2} 5 \cos \left(\pi-1.4-{ }^{\prime \prime} 0.943\right.$ ") $\times 5 \sin \left(\pi-1.4-{ }^{\text {" }} 0.9433^{\prime \prime}\right)$		
	This is dependent on the previous $\mathbf{M l}$ and there must be no other errors in finding the area of triangle EAB		dM1
	Allow M1 for area $E A B=$ awrt 6.2		
	Area $A B C D E=15.17 \ldots+17.5+6.24 \ldots=38.92 \ldots$		
		awrt 38.9	Alcso
			[5]
	Note that a sign error in (b) can give the obtuse angle (2.198....) and could lead to the correct answer in (c) - this would lose the final mark in (c)		Total 9

Question 6

Question Number	Scheme		Marks
(a)	Length $D E A=7(2.1)=14.7$	M1:7×2.1 only	M1A1
		$1: 14.7$	
			[2]
(b)	Angle $C B D=\pi-2.1$	May be seen on the diagram (allow awrt 1.0 and allow 180 120). Could score for sight of Angle $C B D=$ awrt 60 degrees.	M1
	Both $7 \cos (\pi-2.1)$ and $7 \sin (\pi-2.1)$ or Both $7 \cos (\pi-2.1)$ and $\sqrt{7^{2}-(7 \cos (\pi-2.1))^{2}}$ or Both $7 \sin (\pi-2.1)$ and $\sqrt{7^{2}-(7 \sin (\pi-2.1))^{2}}$ Or equivalents to these	A correct attempt to find $B C$ and $B D$. You can ignore how the candidate assigns $B C$ and $C D$. $7 \cos (\pi-2.1)$ can be implied by awrt 3.5 and $7 \sin (\pi-2.1)$ can be implied by awrt 6 . Note if the sin rule is used, do not allow mixing of degrees and radians unless their answer implies a correct interpretation. Dependent on the previous method mark.	dM1
	Note that 2.1 radians is 120 degrees (to 3 sf) which if used gives angle CBD as 60 degrees. If used this gives a correct perimeter of 31.3 and could score full marks.		
	$\mathrm{P}=7 \cos (\pi-2.1)+7 \sin (\pi-2.1)+7+14.7$	their $\mathrm{BC}+$ their $\mathrm{CD}+7+$ their DEA Dependent on both previous method marks	ddM1
	= $31.2764 \ldots$	Awrt 31.3	A1
			[4]
			Total 6

Question 7

Question Number	Scheme	Marks
(a)	$\begin{aligned} & \text { In triangle } O C D \text { complete method used to find angle } C O D \text { so: } \\ & \text { Either } \cos C O D=\frac{8^{2}+8^{2}-7^{2}}{2 \times 8 \times 8} \text { or uses } \angle C O D=2 \times \arcsin \frac{35}{8} \text { oe } \quad \text { so } \angle C O D= \\ & (\angle C O D=0.9056(331894)) \quad=0.906(3 \mathrm{sf})^{*} \quad \text { accept awrt } 0.906 \end{aligned}$	M1 A1 *
(b)	Uses $s=8 \theta$ for any θ in radians or $\frac{\theta}{360} \times 2 \pi \times 8$ for any θ in degrees $\theta=\frac{\pi-" C O D "}{2} \quad(=\text { awrt } 1.12) \text { or } 2 \theta(=\text { awrt } 2.24) \text { and Perimeter }=23+(16 \times \theta)$	M1 M1 A1 (3)
(c)	Either Way 1: (Use of Area of two sectors + area of triangle) Area of triangle $=\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (or 25.1781155 accept awrt 25.2) or $\frac{1}{2} \times 8 \times 7 \times \sin 1.118$ or $\frac{1}{2} \times 7 \times h$ after h calculated from correct Pythagoras or trig. Area of sector $=\frac{1}{2} 8^{2} \times 11.117979732$ " (or $35.77535142 \quad$ accept awrt 35.8) Total Area $=$ Area of two sectors + area of triangle $=$ awrt 96.7 or 96.8 or $96.9\left(\mathrm{~cm}^{2}\right)$	
	$\begin{aligned} & \text { Or Way 2: Use of area of semicircle - area of segment) } \\ & \text { Area of semi-circle }=\frac{1}{2} \times \pi \times 8 \times 8 \text { (or } 100.5 \text {) } \\ & \text { Area of segment }=\frac{1}{2} 8^{2} \times(" 0.906 \text { " }-\sin " 0.906 ") \text { (or } 3.807 \text {) } \\ & \text { So area required }=\text { awr } 96.7 \text { or } 96.8 \text { or } 96.9\left(\mathrm{~cm}^{2}\right) \end{aligned}$	$\begin{array}{lr} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & (3) \\ & {[8]} \end{array}$

Notes

(a) M1: Either use correctly quoted cosine rule - may quote as $7^{2}=8^{2}+8^{2}-2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha=\ldots$

Or split isosceles triangle into two right angled triangles and use arcsin or longer methods using Pythagoras and arcos (i.e. $\pi-2 \times \arccos \frac{3.5}{8}$). There are many ways of showing this result.
Must conclude that $\angle C O D=$
A1*: (NB this is a given answer) If any errors or over-approximation is seen this is A0. It needs correct work leading to stated answer of 0.906 or awrt 0.906 for A1. The cosine of COD is equal to $79 / 128$ or awrt 0.617 . Use of 0.62 (2 sf) does not lead to printed answer. They may give 51.9 in degrees then convert to radians. This is fine.
The minimal solution $7^{2}=8^{2}+8^{2}-2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha=\ldots . .0 .906$ (with no errors seen) can have M1A1 but errors rearranging result in M1A0
(b) M1: Uses formula for arc length with $r=8$ and any angle i.e. $s=8 \theta$ if working in rads or $s=\frac{\theta}{360} \times 2 \pi \times 8$ in degrees
(If the formula is quoted with r the 8 may be implied by the value of their $r \theta$)
M1: Uses angles on straight line (or other geometry) to find angle $B O C$ or $A O D$ and uses
Perimeter $=23+\operatorname{arc}$ lengths $B C$ and $A D \quad$ (may make a slip - in calculation or miscopying)
Al: correct work leading to awrt 40.9 not 40.8 (do not need to see cm) This answer implies M1M1A1
(c) Way 1: M1: Mark is given for correct statement of area of triangle $\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (must use correct angle) or for correct answer (awrt 25.2) Accept alternative correct methods using Pythagoras and $1 / 2$ base \times height M1: Mark is given for formula for area of sector $\frac{1}{2} 8^{2} \times 1.117979732^{\prime \prime}$ with $r=8$ and their angle $B O C$ or $A O D$ or $(B O C+A O D)$ not $C O D$. May use $A=\frac{\theta}{360} \times \pi \times 8^{2}$ if working in degrees
A1: Correct work leading to awrt $96.7,96.8$ or 96.9 (This answer implies M1M1A1)
NB. Solution may combine the two sectors for part (b) and (c) and so might use $2 \times \angle B O C$ rather than $\angle B O C$
Way 2: M1: Mark is given for correct statement of area of semicircle $\frac{1}{2} \times \pi \times 8 \times 8$ or for correct answer 100.5
M1: Mark is given for formula for area of segment $\frac{1}{2} 8^{2} \times\left({ }^{\prime \prime} 0.906^{\prime \prime}-\sin ^{\prime \prime} 0.906^{\prime \prime}\right)$ with $r=8$ or 3.81 Al : As in Way 1

Question 8

Question Number	Scheme	Marks
(a)	Usually answered in radians: Uses $B C D=3.5 \times$ (angle),$=3.5 \times 1.77=6.195$ (m) (accept awrt 6.20)	M1 A1 (2)
(b)	$\text { Area }=\frac{1}{2}(3.5)^{2} \times 1.77=10.84 \quad\left(\mathrm{~m}^{2}\right)$	M1 A1
(c)	$\begin{aligned} & \text { Area of triangle }=\frac{1}{2} \times 3.7 \times 3.5 \times \sin (\text { angle }),=\frac{1}{2} \times 3.7 \times 3.5 \times \sin \left(\frac{\pi}{2}-\frac{1.77}{2}\right) \\ & \begin{aligned} \text { Total area } & = \\ & =10.84 "+2 \times " 4.101 " \\ & 19.04 \end{aligned} \end{aligned}$ (=awrt 4.1)	M1, A1 M1 A1cao
		(4)
(a)	M1: uses $s=3.5 \times \theta$ with θ in radians or completely correct work in degrees A1: awrt 6.20 or just 6.2 (do not need to see units) Correct answer can imply the method.	
(b)	A1: awrt 6.20 or just 6.2 (do not need to see units) Correct answer can imply the method. M1 for attempt to use $A=\frac{1}{2} \times 3.5^{2} \times \theta$ (Accept θ in degrees.)	
	A1 for awrt 10.84 (do not need to see units) isw if correct answer is followed by 10.8. Con can imply the method.	ct answer
(c)	M1: Uses area of triangle $\frac{1}{2} \times 3.7 \times 3.5 \times \sin$ (angle) Must be correct method for area of triangle but may be less direct.	
	A1: Correct expression using correct angle i.e. $\frac{\pi}{2}-\frac{1.77}{2}$ or awrt 0.69 or awrt 39 degrees (need at least 2	
	sf if no other work seen, but may be implied by correct final answer) If correct expression is isw (so e.g. isw an answer of 0.0775 implying angle set to degrees on calculator) M1: Adds twice their second calculated area (even if rectangle or segment) to their sector a have been slips or errors in one or both formulae - such as missing $1 / 2$ or mixture of degrees or weak attempt at triangle area) so M0A0M1A0 is a possible mark distribution A1: 19.04 cao (common answer through insufficient accuracy is 19.08 which loses final ma Special Case. The mark profile M1A0M1A0M1A0M1A0 can be given if the angle is misun as 1.77π or as $A F B$ for example	given then rea (may nd radians k) erstood
	If " 10.84 " $+3.5 \times 3.7 \sin$ (angle) is used then this can gain both M marks and the A marks if correct.	

