

Connected Rates of Change 2 - Edexcel Past Exam Questions MARK SCHEME

Question 1

Question Number	Scheme	Marks	
	(a) $V = x^3 \implies \frac{dV}{dx} = 3x^2 + \infty$ cso	B1	(1)
	(b) $\frac{dx}{dt} = \frac{dx}{dV} \times \frac{dV}{dt} = \frac{0.048}{3x^2}$ At $x = 8$	M1	
	$\frac{dx}{dt} = \frac{0.048}{3(8^2)} = 0.00025 (\text{cm s}^{-1})$	A1	(2)
	(c) $S = 6x^2 \implies \frac{dS}{dx} = 12x$	B1	
	$\frac{dS}{dt} = \frac{dS}{dx} \times \frac{dx}{dt} = 12x \left(\frac{0.048}{3x^2} \right)$ At $x = 8$	M1	
	$\frac{dS}{dt} = 0.024 \left(\text{ cm}^2 \text{ s}^{-1} \right)$	A1	(3) [6]

Connected Rate of Change

Question 2

Question		Scheme	Marks			
Number	$\frac{dV}{dt} = 80\pi$, $V = 4\pi h(h+4) = 4\pi h^2 + 16\pi h$,					
		$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi$ $\pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0$ $8\pi h + 16\pi$	M1 A1			
	$\left\{ \frac{\mathrm{d}V}{\mathrm{d}h} \right\}$	$\times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Rightarrow \begin{cases} (8\pi h + 16\pi)\frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \end{cases}$ (Candidate's $\frac{\mathrm{d}V}{\mathrm{d}h}$) $\times \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi$	M1 oe ¬			
	$\left\{ \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Rightarrow \right\} \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \times \frac{1}{8\pi h + 16\pi} \text{or } 80\pi + \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h}$					
	When $h = 6$, $\left\{ \frac{dh}{dt} = \right\} \frac{1}{8\pi(6) + 16\pi} \times 80\pi = \frac{80\pi}{64\pi}$ dependent on the previous M1 see notes					
	$\frac{dh}{dt} = 1.25 \text{ (cms}^{-1}\text{)}$ 1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$					
			[5]			
	Altern	native Method for the first M1A1				
	ъ.,	et rule: $\begin{cases} u = 4\pi h & v = h + 4 \\ \frac{du}{dh} = 4\pi & \frac{dv}{dh} = 1 \end{cases}$				
	Produc	et rule: $\left\{ \frac{du}{dt} = 4\pi \qquad \frac{dv}{dt} = 1 \right\}$				
		(dr dr)	M1			
	$\frac{dr}{dh} =$	$4\pi(h+4) + 4\pi h$ $\pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0$ $4\pi(h+4) + 4\pi h$	A1			
		Question Notes	,			
	M1	An expression of the form $\pm \alpha h \pm \beta$, $\alpha \neq 0$, $\beta \neq 0$. Can be simplified or un-simplified.				
	A1 Correct simplified or un-simplified differentiation of V . eg. $8\pi h + 16\pi$ or $4\pi (h + 4) + 4\pi h$ or $8\pi (h + 2)$ or equivalent.					
	Note					
	Note	dV .				
	М1	$\left(\text{Candidate's } \frac{\text{d}V}{\text{d}h}\right) \times \frac{\text{d}h}{\text{d}t} = 80\pi \text{ or } 80\pi \Rightarrow \text{Candidate's } \frac{\text{d}V}{\text{d}h}$				
	Note Also allow 2 nd M1 for $\left(\text{Candidate's } \frac{\text{d}V}{\text{d}h}\right) \times \frac{\text{d}h}{\text{d}t} = 80 \text{ or } 80 \div \text{Candidate's } \frac{\text{d}V}{\text{d}h}$ Note Give 2 nd M0 for $\left(\text{Candidate's } \frac{\text{d}V}{\text{d}h}\right) \times \frac{\text{d}h}{\text{d}t} = 80 \pi t \text{ or } 80 \text{k} \text{ or } 80 \pi t \text{ or } 80 \text{k} + \text{Candidate's } \frac{\text{d}V}{\text{d}h}$					
	dM1	which is dependent on the previous M1 mark.				
		Substitutes $h = 6$ into an expression which is a result of a quotient of their $\frac{dV}{dh}$ and 80π	(or 80)			
	A1	1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ (units are not required).				
	Note	$\frac{80\pi}{64\pi}$ as a final answer is A0.				
	Note Substituting $h = 6$ into a correct $\frac{dV}{dh}$ gives 64π but the final M1 mark can only be awarded if the					
		is used as a quotient with 80π (or 80)				

Connected Rate of Change

Question 3

Question Number		Scheme		Marks			
(a)	From que	estion, $V = \frac{4}{3}\pi r^3$, $S = 4\pi r^2$, $\frac{dV}{dt} = 3$					
	$\left\{ V = \frac{4}{3}\pi \right\}$	$r^3 \Rightarrow \left. \frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2 \right.$	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4/\pi r^2 \text{(Can be implied)}$	B1 oe			
	(ur	$\frac{dr}{dt} = \frac{dV}{dt} \Rightarrow \left\{ (4\pi r^2) \frac{dr}{dt} = 3 \right\}$	$\left(\text{Candidate's } \frac{\text{d}V}{\text{d}r}\right) \times \frac{\text{d}r}{\text{d}t} = 3$	M1 oe			
	$\left\{ \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}t} \right\}$	$\frac{dV}{dt} + \frac{dV}{dr} \Rightarrow $ $\left\{ -\frac{dr}{dt} = (3)\frac{1}{4\pi r^2}; \left\{ = \frac{3}{4\pi r^2} \right\} \right\}$ or $3 \div \text{Candidate's } \frac{dV}{dr};$					
	When $r =$	When $r = 4 \text{ cm}$, $\frac{dr}{dt} = \frac{3}{4\pi(4)^2} \left\{ = \frac{3}{64\pi} \right\}$ dependent on previous M1. see notes					
	Hence,	$\frac{dr}{dt} = 0.01492077591(cm^2 s^{-1})$	anything that rounds to 0.0149	A1			
				[4]			
(b)	$\left\{ \frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}S}{\mathrm{d}S} \right\}$	$\frac{dS}{dr} \times \frac{dr}{dt} = $ $\} \Rightarrow \frac{dS}{dt} = 8\pi r \times \frac{3}{4\pi r^2} \left\{ \text{or } \frac{6}{r} \text{ or } 8\pi r \right\}$	$\times 0.0149$ $8 \pi r \times \text{Candidate's } \frac{dr}{dt}$	M1; oe			
	When $r = 4 \text{ cm}$, $\frac{dr}{dt} = 8\pi(4) \times \frac{3}{4\pi(4)^2}$ or $\frac{6}{4}$ or $8\pi(4) \times 0.0149$						
	Hence,	Hence, $\frac{dS}{dt} = 1.5 \text{ (cm}^2 \text{ s}^{-1}\text{)}$ anything that rounds to 1.5					
		Question N	otes				
(a)	B1 $\frac{dV}{dr} = 4\pi r^2$ Can be implied by later working.						
	M1 $\left(\text{Candidate's } \frac{dV}{dr} \right) \times \frac{dr}{dt} = 3 \text{ or } 3 + \text{Candidate's } \frac{dV}{dr}$						
	dM1	(dependent on the previous method mark)					
		Substitutes $r = 4$ into an expression which is a result of a quotient of "3" and their $\frac{dV}{dr}$.					
	A1	anything that rounds to 0.0149 (units are not requ	nired)				
(b)	M1	$8\pi r \times \text{Candidate's } \frac{dr}{dt}$					
	A1 anything that rounds to 1.5 (units are not required). Correct solution only.						
	Note	Using $\frac{dr}{dt} = 0.0149$ gives $\frac{dS}{dt} = 1.4979$ which	is fine for A1.				