

Finding Areas using Integration 2 - Edexcel Past Exam Questions MARK SCHEME

Question Number	Scheme	Marks
	(a) $\int x^{\frac{1}{2}} \ln 2x dx = \frac{2}{3} x^{\frac{3}{2}} \ln 2x - \int \frac{2}{3} x^{\frac{3}{2}} \times \frac{1}{x} dx$	M1 A1
	$= \frac{2}{3} x^{\frac{3}{2}} \ln 2x - \int \frac{2}{3} x^{\frac{1}{2}} dx$ $= \frac{2}{3} x^{\frac{3}{2}} \ln 2x - \frac{4}{9} x^{\frac{3}{2}} (+C)$	M1 A1 (4)
	(b) $\left[\frac{2}{3}x^{\frac{1}{2}}\ln 2x - \frac{4}{9}x^{\frac{1}{2}}\right]_{1}^{4} = \left(\frac{2}{3}4^{\frac{1}{2}}\ln 8 - \frac{4}{9}4^{\frac{1}{2}}\right) - \left(\frac{2}{3}\ln 2 - \frac{4}{9}\right)$	M1
	= $(16 \ln 2)$ Using or implying $\ln 2^n = n \ln 2$	M1
	$=\frac{46}{3}\ln 2 - \frac{28}{9}$	A1 (3)

Question Marks Scheme Number $\left\{u=1+\sqrt{x}\right\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x}=\frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{\mathrm{d}x}{\mathrm{d}u}=2(u-1)$ <u>B1</u> $\int \frac{(u-1)^2}{u} \dots$ M1 $\left\{\int \frac{x}{1+\sqrt{x}} \, \mathrm{d}x = \right\} \int \frac{(u-1)^2}{u} \cdot 2(u-1) \, \mathrm{d}u$ $\int \frac{(u-1)^2}{u} \cdot 2(u-1)$ A1 $= 2 \int \frac{(u-1)^3}{u} \, du = \{2\} \int \frac{(u^3 - 3u^2 + 3u - 1)}{u} \, du$ Expands to give a "four term" cubic in u. M1 Eg: $\pm Au^3 \pm Bu^2 \pm Cu \pm D$ $= \{2\} \int \left(u^2 - 3u + 3 - \frac{1}{u} \right) du$ An attempt to divide at least three terms in M1 their cubic by u. See notes. $= \{2\} \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u\right)$ $\int \frac{(u-1)^3}{u} \rightarrow \left(\frac{u^3}{3} - \frac{3u^2}{2} + 3u - \ln u\right)$ A1 Area(R) = $\left[\frac{2u^3}{3} - 3u^2 + 6u - 2\ln u\right]^3$ Applies limits of 3 and 2 in $=\left(\frac{2(3)^3}{3}-3(3)^2+6(3)-2\ln 3\right)-\left(\frac{2(2)^3}{3}-3(2)^2+6(2)-2\ln 2\right)$ u or 4 and 1 in x and M1 subtracts either way round. $=\frac{11}{3}+2\ln 2-2\ln 3$ or $\frac{11}{3}+2\ln\left(\frac{2}{3}\right)$ or $\frac{11}{3}-\ln\left(\frac{9}{4}\right)$, etc Correct exact answer A1 or equivalent. [8]

Question Number	Scheme		Marks
	$\left\{ \int (4t e^{-\frac{1}{3}t} + 3) dt \right\} = -12t e^{-\frac{1}{3}t} - \int -12e^{-\frac{1}{3}t} \{dt\} \qquad \pm At e^{-\frac{1}{3}t} \pm At = -\frac{1}{3}t = -12t e^{-\frac{1}{3}t} = -12t e^{-1$	$B \int e^{-\frac{1}{3}t} \{ dt \}, A \neq 0, B \neq 0$	M1
	$\left[\int (dt)^{-1} dt \int dt $	See notes. $3 \rightarrow 3t$	A1 B1
	$= -12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t} \{+3t\}$	$-12t\mathrm{e}^{-\frac{1}{3}t}-36\mathrm{e}^{-\frac{1}{3}t}$	A1
	$\left[-12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t} + 3t\right]_{0}^{8} = \left(-12(8)e^{-\frac{1}{3}(8)} - 36e^{-\frac{1}{3}(8)} + 3(8)\right) - \left(-12(0)e^{-\frac{1}{3}(0)} - 36e^{-\frac{1}{3}(0)} + 3(0)\right)$	Substitutes limits of 8 and 0 into an integrated function of the form of either $\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t}$ or $\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} + Bt$ and subtracts the correct way round.	dM1
	$= \left(-96e^{-\frac{8}{3}} - 36e^{-\frac{8}{3}} + 24\right) - (0 - 36 + 0)$ $= 60 - 132e^{-\frac{8}{3}}$	$60 - 132e^{-\frac{8}{3}}$	A1
	- 00 - 1520	00 - 1526	[

Question Number	Scheme	Marks
	$y = 4x - x e^{\frac{1}{2}x}, \ x \ge 0$	
(a)	$\left\{ y = 0 \implies 4x - x e^{\frac{1}{2}x} = 0 \implies x(4 - e^{\frac{1}{2}x}) = 0 \implies \right\}$	
	$e^{\frac{1}{2}x} = 4 \implies x_A = 4\ln 2$ Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$	M1
	$4\ln 2$ cao (Ignore $x = 0$)	A1
	1 1	[2]
(b)	$\left\{ \int x e^{\frac{1}{2}x} dx \right\} = 2x e^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{ dx \}$ $\frac{\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{ dx \}, \alpha > 0, \beta > 0$ $\frac{1}{2}x - \beta \int e^{\frac{1}{2}x} \{ dx \}, \alpha > 0, \beta > 0$	M1
(0)	$\{\int xe^{x} dx\} = 2xe^{x} - \int 2e^{x} \{dx\}$ $2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}, \text{ with or without } dx$	A1 (MI on ePEN)
	$= 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \{+c\} \qquad 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \text{ o.e. with or without } +c$	A1
		[3]
(c)	$\left\{ \int 4x dx \right\} = 2x^2 \qquad \qquad 4x \to 2x^2 \text{ or } \frac{4x^2}{2} \text{ o.e.}$	B1
	$\left\{\int_{0}^{4\ln 2} (4x - x e^{\frac{1}{2}x}) dx\right\} = \left[2x^{2} - \left(2x e^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)\right]_{0}^{4\ln 2 \text{ or ln16 or their limits}}$	
	$= \left(2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 4e^{\frac{1}{2}(4\ln 2)}\right) - \left(2(0)^2 - 2(0)e^{\frac{1}{2}(0)} + 4e^{\frac{1}{2}(0)}\right)$ See notes	M1
	$= (32(\ln 2)^2 - 32(\ln 2) + 16) - (4)$	
	$= 32(\ln 2)^2 - 32(\ln 2) + 12$ 32(ln2) ² - 32(ln2) + 12, see notes	[3]
L		8

		Question Notes	
(a)	M 1	Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$	
	Al	$4\ln 2$ cao stated in part (a) only (Ignore $x = 0$)	
(b)	NOT E	Part (b) appears as M1M1A1 on ePEN, but is now marked as M1A1A1.	
	M1	Integration by parts is applied in the form $\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{dx\}$, where $\alpha > 0$, $\beta > 0$.	
		(must be in this form) with or without dx	
	Al	$2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$ or equivalent, with or without dx . Can be un-simplified.	
	Al	$2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$ or equivalent with or without + c. Can be un-simplified.	
	Note	You can also allow $2e^{\frac{1}{2}x}(x-2)$ or $e^{\frac{1}{2}x}(2x-4)$ for the final A1.	
	isw	isw You can ignore subsequent working following on from a correct solution.	
	SC	<u>SPECIAL CASE</u> : A candidate who uses $u = x$, $\frac{dv}{dx} = e^{\frac{1}{2}x}$, writes down the correct "by parts"	
		formula, but makes only one error when applying it can be awarded Special Case M1.	
		(Applying their v counts for one consistent error.)	

٦

(c)	B1	$4x \rightarrow 2x^2$ or $\frac{4x^2}{2}$ oe
	M1	Complete method of applying limits of their X_A and 0 to all terms of an expression of the form
		$\pm Ax^2 \pm Bx e^{\frac{1}{2}x} \pm Ce^{\frac{1}{2}x}$ (where $A \neq 0, B \neq 0$ and $C \neq 0$) and subtracting the correct way round.
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.
	Note	ln16 or 2ln4 or equivalent is fine as an upper limit.
	Al	A correct three term exact quadratic expression in ln2.
		For example allow for A1
		• $32(\ln 2)^2 - 32(\ln 2) + 12$
		• $8(2\ln 2)^2 - 8(4\ln 2) + 12$
		 2(4ln2)² - 32(ln2) + 12
		• $2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 12$
	Note	Note that the constant term of 12 needs to be combined from $4e^{\frac{1}{2}(4\ln 2)} - 4e^{\frac{1}{2}(0)}$ o.e.
	Note	Also allow $32 \ln 2(\ln 2 - 1) + 12$ or $32 \ln 2\left(\ln 2 - 1 + \frac{12}{32 \ln 2}\right)$ for A1.
	Note	Do not apply "ignore subsequent working" for incorrect simplification.
		Eg: $32(\ln 2)^2 - 32(\ln 2) + 12 \rightarrow 64(\ln 2) - 32(\ln 2) + 12$ or $32(\ln 4) - 32(\ln 2) + 12$
	Note	Bracketing error: $32\ln 2^2 - 32(\ln 2) + 12$, unless recovered is final A0.
	Note	Notation: Allow $32(\ln^2 2) - 32(\ln 2) + 12$ for the final A1.
	Note	5.19378 without seeing 32(ln2) ² - 32(ln2) + 12 is A0.
	Note	5.19378 following from a correct $2x^2 - \left(2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)$ is M1A0.
	Note	5.19378 from no working is M0A0.

Question Number	Scheme	Marks
(a)	$A = \int_0^3 \sqrt{(3-x)(x+1)} \mathrm{d}x \ , \ x = 1 + 2\sin\theta$	
	$\frac{dx}{d\theta} = 2\cos\theta \qquad \qquad \frac{dx}{d\theta} = 2\cos\theta \text{ or } 2\cos\theta \text{ used correctly} \\ \text{in their working. Can be implied.}$	B1
	$\left\{ \int \sqrt{(3-x)(x+1)} dx \text{ or } \int \sqrt{(3+2x-x^2)} dx \right\}$	
	$= \int \sqrt{(3 - (1 + 2\sin\theta))((1 + 2\sin\theta) + 1)} 2\cos\theta \{d\theta\}$ Substitutes for both x and dx, where $dx \neq \lambda d\theta$. Ignore $d\theta$	М1
	$= \int \sqrt{(2 - 2\sin\theta)(2 + 2\sin\theta)} \ 2\cos\theta \left\{ d\theta \right\}$ $= \int \sqrt{(4 - 4\sin^2\theta)} \ 2\cos\theta \left\{ d\theta \right\}$	
	$= \int \sqrt{4 - 4(1 - \cos^2 \theta)} 2 \cos \theta \{ d\theta \} \text{ or } \int \sqrt{4 \cos^2 \theta} 2 \cos \theta \{ d\theta \} $ Applies $\cos^2 \theta = 1 - \sin^2 \theta$ see notes	М1
	$= 4 \int \cos^2 \theta d\theta, \ \{k = 4\}$ $4 \int \cos^2 \theta d\theta \text{ or } \int 4 \cos^2 \theta d\theta$ Note: $d\theta$ is required here.	A1
	$0 = 1 + 2\sin\theta$ or $-1 = 2\sin\theta$ or $\sin\theta = -\frac{1}{2} \Rightarrow \frac{\theta = -\frac{\pi}{6}}{6}$ and $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1 \Rightarrow \theta = \frac{\pi}{2}$ See notes	B1
		[5]
(b)	$\left\{k\int\cos^2\theta\left\{d\theta\right\}\right\} = \left\{k\right\}\int\left(\frac{1+\cos 2\theta}{2}\right)\left\{d\theta\right\} $ Applies $\cos 2\theta = 2\cos^2\theta - 1$ to their integral	M1
	$= \{k\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right) $ Integrates to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$	M1 (Al on ePEN)
	$\left\{\operatorname{So} 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta \mathrm{d}\theta = \left[2\theta + \sin 2\theta\right]_{-\frac{\pi}{6}}^{\frac{\pi}{2}}\right\}$	
	$= \left(2\left(\frac{\pi}{2}\right) + \sin\left(\frac{2\pi}{2}\right)\right) - \left(2\left(-\frac{\pi}{6}\right) + \sin\left(-\frac{2\pi}{6}\right)\right)$	
	$\left\{ = \left(\pi\right) - \left(-\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right) \right\} = \frac{4\pi}{3} + \frac{\sqrt{3}}{2} \qquad \qquad$	A1 cao cso
		[3] 8

		Question Notes			
(a)	B1	$\frac{dx}{d\theta} = 2\cos\theta$. Also allow $dx = 2\cos\theta d\theta$. This mark can be implied by later working.			
	Note	$d\theta$ You can give B1 for $2\cos\theta$ used correctly in their working.			
	M1	Substitutes $x = 1 + 2\sin\theta$ and their $dx \left(\text{from their rearranged} \frac{dx}{d\theta} \right)$ into $\sqrt{(3-x)(x+1)} dx$.			
	NoteCondone bracketing errors here.Note $dx \neq \lambda d\theta$. For example $dx \neq d\theta$.				
	Note	Condone substituting $dx = \cos\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 2\cos\theta$ or $dx = 2\cos\theta d\theta$			
	M1	Applies either			
		• $1 - \sin^2 \theta = \cos^2 \theta$			
		• $\lambda - \lambda \sin^2 \theta$ or $\lambda (1 - \sin^2 \theta) = \lambda \cos^2 \theta$			
		• $4 - 4\sin^2\theta = 4 + 2\cos 2\theta - 2 = 2 + 2\cos 2\theta = 4\cos^2\theta$			
		to their expression where λ is a numerical value.			
	Al	Correctly proves that $\int \sqrt{(3-x)(x+1)} dx$ is equal to $4 \int \cos^2 \theta d\theta$ or $\int 4\cos^2 \theta d\theta$			
	Note	All three previous marks must have been awarded before A1 can be awarded.			
	Note	Their final answer must include $d\theta$.			
	Note B1	You can ignore limits for the final A1 mark.			
	DI	Evidence of a correct equation in $\sin \theta$ or $\sin^{-1} \theta$ for both x-values leading to both θ values. Eg:			
		• $0 = 1 + 2\sin\theta$ or $-1 = 2\sin\theta$ or $\sin\theta = -\frac{1}{2}$ which then leads to $\theta = -\frac{\pi}{6}$, and			
		• $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1$ which then leads to $\theta = \frac{\pi}{2}$			
	Note	Allow B1 for $x = 1 + 2\sin\left(-\frac{\pi}{6}\right) = 0$ and $x = 1 + 2\sin\left(\frac{\pi}{2}\right) = 3$			
	Note	Allow B1 for $\sin \theta = \left(\frac{x-1}{2}\right)$ or $\theta = \sin^{-1}\left(\frac{x-1}{2}\right)$ followed by $x = 0, \ \theta = -\frac{\pi}{6}; \ x = 3, \ \theta = \frac{\pi}{2}$			
(b)	NOTE	Part (b) appears as MIAIA1 on ePEN, but is now marked as MIMIA1.			
	M1	Writes down a correct equation involving $\cos 2\theta$ and $\cos^2 \theta$			
		Eg: $\cos 2\theta = 2\cos^2 \theta - 1$ or $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ or $\lambda \cos^2 \theta = \lambda \left(\frac{1 + \cos 2\theta}{2}\right)$			
		and applies it to their integral. Note: Allow M1 for a correctly stated formula (via an			
	10	incorrect rearrangement) being applied to their integral.			
	MI	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0$, $\beta \neq 0$			
	Al	(can be simplified or un-simplified). A correct solution in part (b) leading to a "two term" exact answer.			
		Eg: $\frac{4\pi}{3} + \frac{\sqrt{3}}{2}$ or $\frac{8\pi}{6} + \frac{\sqrt{3}}{2}$ or $\frac{1}{6}(8\pi + 3\sqrt{3})$			
	Note	5.054815 from no working is M0M0A0.			
	Note	Candidates can work in terms of k (note that k is not given in (a)) for the M1M1 marks in part (b).			
	Note	If they incorrectly obtain 4 $\int_{-\infty}^{\frac{\pi}{2}} \cos^2 \theta d\theta$ in part (a) (or guess $k = 4$) then the final A1 is available			
		for a correct solution in part (b) only.			
	1	······································			

Question Number		Scheme		Marks
Way 1	$\left\{ \mathbf{I} = \int x^2 \ln x \mathrm{d}x \right\}, \begin{cases} u = \ln x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \\ \frac{\mathrm{d}v}{\mathrm{d}x} = x^2 \Rightarrow v = -1 \end{cases}$	$\left[\frac{1}{x}\right]_{3}$		
	$=\frac{x^3}{3}\ln x - \int \frac{x^3}{3} \left(\frac{1}{x}\right) \{dx\}$		$\ln x \to \pm \lambda x^3 \ln x - \int \mu x^3 \left(\frac{1}{x}\right) \{dx\}$ $^3 \ln x - \int \mu x^2 \{dx\} \text{, where } \lambda, \mu > 0$	M1
	3 J 3 (x)		$x^2 \ln x \rightarrow \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \left(\frac{1}{x}\right) \{dx\},\$ simplified or un-simplified	A1
	$=\frac{x^3}{3}\ln x - \frac{x^3}{9}$	$\frac{x^3}{3}\ln x$	$-\frac{x^3}{9}$, simplified or un-simplified	A1
	Area $(R) = \left\{ \left[\frac{x^3}{3} \ln x - \frac{x^3}{9} \right]_1^2 \right\} = \left(\frac{8}{3} \ln x - \frac{x^3}{9} \right)_1^2 \right\}$	$2-\frac{8}{9}-\left(0-\frac{1}{9}\right)$	dependent on the previous M mark. Applies limits of 2 and 1 and subtracts the correct way round	dM1
	$=\frac{8}{3}\ln 2 - \frac{7}{9}$		$\frac{8}{3}\ln 2 - \frac{7}{9} \text{ or } \frac{1}{9}(24\ln 2 - 7)$	A1 oe cso
				[5]

Way 2	$I = x^{2}(x\ln x - x) - \int 2x(x\ln x - x) dx$	$\begin{cases} u = x^2 \implies \frac{\mathrm{d}u}{\mathrm{d}x} = 2x \\ \frac{\mathrm{d}v}{\mathrm{d}x} = \ln x \implies v = x\ln x - x \end{cases}$	
	So, $3I = x^2(x \ln x - x) + \int 2x^2 \{dx\}$		
		A full method of applying $u = x^2$, $v' = \ln x$ to give	
	and $I = \frac{1}{3}x^2(x\ln x - x) + \frac{1}{3}\int 2x^2 \{dx\}$	$\pm \lambda x^2 (x \ln x - x) \pm \mu \int x^2 \{ dx \}$	M1
	3, (and a), 3, 2, (a)	$\frac{1}{3}x^{2}(x\ln x - x) + \frac{1}{3}\int 2x^{2} \left\{ dx \right\}$	A1
		simplified or un-simplified	
	$= \frac{1}{3}x^2(x\ln x - x) + \frac{2}{9}x^3$	$\frac{x^3}{3}\ln x - \frac{x^3}{9}$, simplified or un-simplified	A1
		Then award dM1A1 in the same way as above	M1 A1
			[5]
			9

Question Number	Sci	ieme		Notes		Marks
(a)	$\left\{ u = e^x \text{ or } x = \ln u \Longrightarrow \right\}$					
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^x \text{ or } \frac{\mathrm{d}u}{\mathrm{d}x} = u \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u}$	$=\frac{1}{u}$ or du	$u = u \mathrm{d} x$ etc., and	$d \int \frac{6}{(e^x + 2)} dx = \int \frac{6}{(u+2)u}$	du See notes	B1 *
	$\{x = 0\} \Rightarrow a = e^{0} \Rightarrow \underline{a} = 1$ $\{x = 1\} \Rightarrow b = e^{1} \Rightarrow \underline{b} = \underline{e}$			a = 1 and $bor evidence of 0 \rightarrow$	$= e \text{ or } b = e^1$ $\Rightarrow 1 \text{ and } 1 \rightarrow e$	B1
	NOTE: 1 st B NOTE: 2 nd	l mark CA ¹ Bl mark	NNOT be reco CAN be recove	overed for work in part (d) ered for work in part (d)		[2]
(b) Way 1	$\frac{6}{u(u+2)} \equiv \frac{A}{u} + \frac{B}{(u+2)}$ $\Rightarrow 6 \equiv A(u+2) + Bu$	Writing -	$\frac{6}{u(u+2)}=\frac{A}{u}+$	$\frac{B}{(u+2)}$, o.e. or $\frac{1}{u(u+2)}$ = thod for finding the value of <i>u</i> their <i>A</i> or their <i>B</i> (or their	at least one of	М1
	$u = 0 \implies A = 3$ $u = -2 \implies B = -3$	Both th		their $B = -3$. (Or their $P =$ the factor of 6 in front of the	-	A1
	$\int \frac{6}{u(u+2)} \mathrm{d}u = \int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) \mathrm{d}u$ $= 3\ln u - 3\ln(u)$	2))		Integrates $\frac{M}{u} \pm \frac{N}{u \pm k}$, two term partial fraction) to αu) or $\pm \mu \ln(\beta(u \pm k)); \lambda$	o obtain either	М1
	or $= 3\ln 2u - 3h$		Integration of	both terms is correctly follo from their M and		A1 ft
	$\left\{ So \left[3 \ln u - 3 \ln(u+2) \right]_{1}^{e} \right\}$ $= \left(3 \ln(e) - 3 \ln(e+2) \right) - \left($	on of the		and their <i>a</i> , where $b > 0$, $b \neq 1$ lies limits of 1 and 0 in <i>x</i> and	hits of e and 1 1, $a > 0$) in u	dM1
	$= 3 - 3\ln(e+2) + 3\ln 3 \text{ or}$ or $3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right) \text{ o}$				see notes	A1 cso
			•	r the final A1 mark.		[6]
	Note: Give final A0 for 3-		-			12
	Note: Give final A0 for 3-				-	
	Note: Give final A0 for 3ln	$e - 3\ln(e +$	$(2) + 3\ln 3$, whe	re 3ln e has not been simplif	tied to 3	

(a)	1 st B1	Must start from either			
(4)		• $\int y dx$, with integral sign and dx			
		• $\int \frac{6}{(e^x + 2)} dx$, with integral sign and dx			
		• $\int \frac{6}{(e^x + 2)} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$			
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$			
		and end at $\int \frac{6}{u(u+2)} du$, with integral sign and du , with no incorrect working.			
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\int \frac{6}{(e^x + 2)} dx = \int \frac{6}{u(u+2)} du$ is sufficient for 1 st B1			
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e^{1}$			
	Note	You can also give the 1 st B1 mark for using a reverse process. i.e.			
		Proceeding from $\int \frac{6}{u(u+2)} du$ to $\int \frac{6}{(e^x+2)} dx$, with no incorrect working,			
		and stating either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$			
(b)	Note Give final A0 for $3-3\ln(e+2)+3\ln 3$ simplifying to $1-\ln(e+2)+\ln 3$				
(i.e. dividing their correct final answer by 3)		(i.e. dividing their correct final answer by 3)			
		Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.			
	Note	A decimal answer of 1.641502724 (without a correct exact answer) is final A0			
	Note	$\left[-3\ln(u+2)+3\ln u\right]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer) is final M1A0			

		Question Notes Continued	
(b)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.	
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1 st M1	
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.	
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.	
	Note	Award M0A0M1A1ft for a candidate who writes down	
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6 \ln u + 6 \ln(u+2)$	
		AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.	
	Note Award M0A0M0A0 for a candidate who writes down		
		$\int \frac{6}{u(u+2)} \mathrm{d}u = 6 \ln u + 6 \ln(u+2) \text{ or } \int \frac{6}{u(u+2)} \mathrm{d}u = \ln u + 6 \ln(u+2)$	
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.	
	Note	Award MIA1M1A1 for a candidate who writes down	
		$\int \frac{6}{u(u+2)} \mathrm{d}u = 3\ln u - 3\ln(u+2)$	
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.	
	Note	If they lose the "6" and find $\int_{1}^{e} \frac{1}{u(u+2)} du$ we can allow a maximum of M1A0M1A1ftM1A0	

	Question Notes Continued					
(b) Way 2	$\left\{\int \frac{6}{u^2 + 2u} du = \int \frac{3(2u+2)}{u^2 + 2u} du - \int \frac{6u}{u^2 + 2u} du\right\}$					
	$= \int \frac{3(2u+2)}{u^2+2u} du - \int \frac{6}{u+2} du$	<i>ι</i> ∫ [±]	$\int \frac{\pm \alpha (2u+2)}{u^2+2u} \left\{ \mathrm{d}u \right\} \pm \int \frac{\delta}{u+2} \left\{ \mathrm{d}u \right\}, \ \alpha, \beta, \delta \neq 0$			M1
	$\int u + 2u$ $\int u + 2$	Correct expression			A1	
	$= 3\ln(u^2 + 2u) - 6\ln(u + 2)$ Integrates $\frac{\pm M(2u+2)}{u^2 + 2u} \pm \frac{N}{u \pm k}$, $M, N, k \neq 0$, to one of $\pm \lambda \ln(u^2 + 2u)$ or $\pm \mu \ln(u^2 + 2u)$					M1
		Integration of both terms is correctly followed through from their M and from their N			A1 ft	
	$\left\{ \text{So}, \left[3\ln(u^2 + 2u) - 6\ln(u+2) \right]_1^e \right\}$ = $\left(3\ln(e^2 + 2e) - 6\ln(e+2) \right) - \left(3\ln 3 - 6\ln 3 \right)$		dependent on the 2 nd M mark Applies limits of e and 1 (or their b and their a, where $b > 0, b \neq 1, a > 0$) in u or applies limits of 1 and 0 in x and		dM1	
	(,	· · · ·	subtracts the correct way round.			
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) +$	3 ln 3	$3\ln(e^2 + 2e) - 6\ln(e + 2) + 3\ln 3$		A1 o.e.	
(b)	Applying $u = \theta - 1$					[6]
Way 3	$\left\{\int_{1}^{\bullet} \frac{6}{u(u+2)} du = \right\} \int_{2}^{1+\bullet} \frac{6}{(\theta-1)(\theta+1)} d\theta = \int_{2}^{1+\bullet} \frac{6}{\theta^2 - 1} du = \left[3\ln\left(\frac{\theta-1}{\theta+1}\right)\right]_{2}^{1+\bullet}$			M1A1M1A1		
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-2}{2+1}\right) + 2\ln\left(\frac{2-2}{2+1}\right) $	$3\ln\left(\frac{1}{3}\right)$ 3^{rd} M mark is dependent on 2^{rd} M mark		dM1A1		
				-		[6]