

Implicit Differentiation 2 - Edexcel Past Exam Questions MARK SCHEME

Question	1	
Question Number	Scheme	Marks
1. (a)	$\left\{ \frac{\partial x}{\partial x} \times \right\} \underbrace{2 + 6y \frac{dy}{dx}}_{} + \left(\underbrace{\frac{6xy + 3x^2 \frac{dy}{dx}}{dx}}_{} \right) = \underbrace{8x}_{}$	M1 <u>A1</u> <u>B1</u>
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8x - 2 - 6xy}{6y + 3x^2} \right\}$ not necessarily requ	iired.
	At $P(-1,1)$, $m(T) = \frac{dy}{dx} = \frac{8(-1) - 2 - 6(-1)(1)}{6(1) + 3(-1)^2} = -\frac{4}{9}$	dM1 A1 cso
		[5]
(b)	So, $m(\mathbf{N}) = \frac{-1}{-\frac{4}{9}} \left\{ = \frac{9}{4} \right\}$	M1
	N : $y-1=\frac{9}{4}(x+1)$	M1
	N: $9x - 4y + 13 = 0$	A1
		[3]

(a) M1: Differentiates implicitly to include either
$$\pm ky \frac{dy}{dx}$$
 or $3x^2 \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).

A1: $\left(2x+3y^2\right) \rightarrow \left(2+6y \frac{dy}{dx}\right)$ and $\left(4x^2 \rightarrow 8x\right)$. Note: If an extra "sixth" term appears then award A0.

B1: $6xy + 3x^2 \frac{dy}{dx}$.

dM1: Substituting $x = -1$ and $y = 1$ into an equation involving $\frac{dy}{dx}$. Allow this mark if either the numerator or denominator of $\frac{dy}{dx} = \frac{8x - 2 - 6xy}{6y + 3x^2}$ is substituted into or evaluated correctly.

If it is clear, however, that the candidate is intending to substitute $x = 1$ and $y = -1$, then award M0. Candidates who substitute $x = 1$ and $y = -1$, will usually achieve $m(T) = -4$

Note that this mark is dependent on the previous method mark being awarded.

A1: For $-\frac{4}{9}$ or $-\frac{8}{18}$ or -0.4 or awrt -0.44

If the candidate's solution is not completely correct, then do not give this mark.

(b) M1: Applies $m(N) = -\frac{1}{\text{their } m(T)}$.

M1: Uses $y - 1 = (m_N)(x - 1)$ or finds c using $x = -1$ and $y = 1$ and uses $y = (m_N)x + {}^nc^n$, where $m_N = -\frac{1}{\text{their } m(T)}$ or $m_N = \frac{1}{\text{their } m(T)}$ or $m_N = -\text{their } m(T)$.

A1: $9x - 4y + 13 = 0$ or $-9x + 4y - 13 = 0$ or $4y - 9x - 13 = 0$ or $18x - 8y + 26 = 0$ etc.

Must be "=0". So do not allow $9x + 13 = 4y$ etc.

Note: $m_N = -\left(\frac{6y + 3x^2}{8x - 2 - 6xy}\right)$ is MOM0 unless a numerical value is then found for m_N .

Question Number	Scheme	Marks	
	(a) Differentiating implicitly to obtain $\pm ay^2 \frac{dy}{dx}$ and/or $\pm bx^2 \frac{dy}{dx}$	M1	
	$48y^2 \frac{dy}{dx} + \dots - 54 \dots$	A1	
	$9x^2y \rightarrow 9x^2\frac{dy}{dx} + 18xy$ or equivalent	B1	
	$(48y^2 + 9x^2)\frac{dy}{dx} + 18xy - 54 = 0$	M1	
	$\frac{dy}{dx} = \frac{54 - 18xy}{48y^2 + 9x^2} \left(= \frac{18 - 6xy}{16y^2 + 3x^2} \right)$	A1 ((5)
	(b) $18-6xy = 0$ Using $x = \frac{3}{x}$ or $y = \frac{3}{x}$	M1	
	$16y^{3} + 9\left(\frac{3}{y}\right)^{2}y - 54\left(\frac{3}{y}\right) = 0 \text{ or } 16\left(\frac{3}{x}\right)^{3} + 9x^{2}\left(\frac{3}{x}\right) - 54x = 0$ Leading to	M1	
	$16y^{4} + 81 - 162 = 0 or 16 + x^{4} - 2x^{4} = 0$ $y^{4} = \frac{81}{16} or x^{4} = 16$	M1	
	$y = \frac{3}{2}, -\frac{3}{2}$ or $x = 2, -2$	A1 A1	
	Substituting either of their values into $xy = 3$ to obtain a value of the other variable.	M1	
	$\left(2,\frac{3}{2}\right),\left(-2,-\frac{3}{2}\right)$ both		(7) [12]

Question Number	Schem	e	Marks
	$x^2 + 4xy + y^2 + 27 = 0$		
(a)	$\left\{\frac{2x}{2x}\right\} = \frac{2x}{2x} + \left(\frac{4y + 4x\frac{dy}{dx}}{2x}\right) + 2y\frac{dy}{dx} = \frac{2x}{2x} + \frac{2x}{2x$	0	M1 <u>A1</u> <u>B1</u>
	$2x + 4y + (4x + 2y)\frac{\mathrm{d}y}{\mathrm{d}x} = 0$)	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x - 4y}{4x + 2y} \ \left\{ = \frac{-x}{2x} \right\}$	$\left. \frac{-2y}{+y} \right\}$	A1 cso oe
(1)	4x + 2y = 4x +	- 0	[5]
(b)			M1
	y = -2x	$x = -\frac{1}{2}y$	A1
	$x^{2} + 4x(-2x) + (-2x)^{2} + 27 = 0$	$-\frac{1}{2}y\bigg)^2 + 4\bigg(-\frac{1}{2}y\bigg)y + y^2 + 27 = 0$	M1*
	$-3x^2 + 27 = 0$	$-\frac{3}{4}y^2 + 27 = 0$	
	$x^2 = 9$	$y^2 = 36$	dM1*
	x = -3	<i>y</i> = 6	A1
	When $x = -3$, $y = -2(-3)$	hen $y = 6$, $x = -\frac{1}{2}(6)$	ddM1*
	y = 6	x = -3	A1 cso
			[7] 12
	No	tes for Question	12
(a)	M1: Differentiates implicitly to include e	either $4x \frac{dy}{dx}$ or $\pm ky \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).	
	A1 : $(x^2) \to (\underline{2x})$ and $(+ y^2 + 27 = 0)$	$0 \to \pm 2y \frac{dy}{dx} = 0$.	
	Note: If an extra term appears then Note: The $"=0"$ can be implied by		
	i.e.: $2x + 4y + 4x\frac{dy}{dx} + 2y\frac{dy}{dx}$ le	ading to $4x\frac{dy}{dx} + 2y\frac{dy}{dx} = -2x - 4y$ will get A1	(implied).
	B1 : $4y + 4x \frac{dy}{dx}$ or $4\left(y + x \frac{dy}{dx}\right)$ or e	quivalent	
	dM1 : An attempt to factorise out $\frac{dy}{dx}$ as	long as there are at least two terms in $\frac{dy}{dx}$.	
	ie + $(4x + 2y)\frac{dy}{dx} =$ or	$+2(2x+y)\frac{\mathrm{d}y}{\mathrm{d}x}=\dots$	
	_	he previous method mark being awarded.	
	A1: For $\frac{-2x-4y}{4x+2y}$ or equivalent. Eg: $\frac{4}{x+2y}$	$\frac{-2x + 4y}{-4x - 2y}$ or $\frac{-2(x + 2y)}{4x + 2y}$ or $\frac{-x - 2y}{2x + y}$	
	cso: If the candidate's solution is n	ot completely correct, then do not give this mark.	

Notes for Question Continued

(b) M1: Sets the denominator of their $\frac{dy}{dx}$ equal to zero (or the numerator of their $\frac{dx}{dy}$ equal to zero) oe.

A1: Rearranges to give either y = -2x or $x = -\frac{1}{2}y$. (correct solution only).

The first two marks can be implied from later working, i.e. for a correct substitution of either y = -2x into y^2 or for $x = -\frac{1}{2}y$ into 4xy.

M1*: Substitutes $y = \pm \lambda x$ or or $x = \pm \mu y$ or $y = \pm \lambda x \pm a$ or $x = \pm \mu y \pm b$ ($\lambda \neq 0, \mu \neq 0$) into $x^2 + 4xy + y^2 + 27 = 0$ to form an equation in one variable.

dM1*: leading to at least either $x^2 = A$, A > 0 or $y^2 = B$, B > 0

Note: This mark is dependent on the previous method mark (M1*) being awarded.

A1: For x = -3 (ignore x = 3) or if y was found first, y = 6 (ignore y = -6) (correct solution only).

ddM1* Substitutes their value of x into $y = \pm \lambda x$ to give y = value

or substitutes their value of x into $x^2 + 4xy + y^2 + 27 = 0$ to give y = value.

Alternatively, substitutes their value of y into $x = \pm \mu y$ to give x = value

or substitutes their value of y into $x^2 + 4xy + y^2 + 27 = 0$ to give x =value

Note: This mark is dependent on the two previous method marks (M1* and dM1*) being awarded.

A1: (-3, 6) cso.

Note: If a candidate offers two sets of coordinates without either rejecting the incorrect set or accepting the correct set then award A0. DO NOT APPLY ISW ON THIS OCCASION.

Note: x = -3 followed later in working by y = 6 is fine for A1.

Note: y = 6 followed later in working by x = -3 is fine for A1.

Note: x = -3, 3 followed later in working by y = 6 is A0, unless candidate indicates that they are rejecting x = 3

Note: Candidates who set the numerator of $\frac{dy}{dx}$ equal to 0 (or the denominator of their $\frac{dx}{dy}$ equal to zero) can only achieve a maximum of 3 marks in this part. They can only achieve the 2nd, 3rd and 4th Method marks to give a maximum marking profile of M0A0M1M1A0M1A0. They will usually find (-6, 3) { or even (6, -3)}.

Note: Candidates who set the numerator or the denominator of $\frac{dy}{dx}$ equal to $\pm k$ (usually k = 1) can only achieve a maximum of 3 marks in this part. They can only achieve the 2^{nd} , 3^{rd} and 4^{th} Method marks to give a marking profile of M0A0M1M1A0M1A0.

Special Case: It is possible for a candidate who does not achieve full marks in part (a), (but has a correct denominator for $\frac{dy}{dx}$) to gain all 7 marks in part (b).

Eg: An incorrect part (a) answer of $\frac{dy}{dx} = \frac{2x - 4y}{4x + 2y}$ can lead to a correct (-3, 6) in part (b) and 7 marks.

Question Number	Scheme		Marks
	$3^{x-1} + xy - y^2 + 5 = 0$		
		$3^{x-1} \rightarrow 3^{x-1} \ln 3$	B1 oe
		Differentiates implicitly to include either	
	$\begin{cases} \frac{\partial y}{\partial x} \times \\ 3^{x-1} \ln 3 + \left(y + x \frac{dy}{dx}\right) - 2y \frac{dy}{dx} = 0 \end{cases}$	$\pm \lambda x \frac{dy}{dx}$ or $\pm ky \frac{dy}{dx}$.	M1*
	(ignore)	$xy \to + y + x \frac{\mathrm{d}y}{\mathrm{d}x}$	B1
		$ + y + x\frac{dy}{dx} - 2y\frac{dy}{dx} = 0$	A1
	$\{(1,3)\Rightarrow\} 3^{(1-1)}\ln 3 + 3 + (1)\frac{dy}{dx} - 2(3)\frac{dy}{dx} = 0$	Substitutes $x = 1$, $y = 3$ into their differentiated equation or expression.	dM1*
	$\ln 3 + 3 + \frac{\mathrm{d}y}{\mathrm{d}x} - 6\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies 3 + \ln 3 = 5\frac{\mathrm{d}y}{\mathrm{d}x}$		
	$\frac{dy}{dx} = \frac{3 + \ln 3}{5}$		dM1*
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \left(\ln \mathrm{e}^3 + \ln 3 \right) = \frac{1}{5} \ln \left(3 \mathrm{e}^3 \right)$	Uses $3 = \ln e^3$ to achieve $\frac{dy}{dx} = \frac{1}{5} \ln (3e^3)$	A1 cso [7]
			7
	Notes for Qu	iestion	
	B1: Correct differentiation of 3^{x-1} . I.e. $3^{x-1} \rightarrow$ or $3^{x-1} = e^{(x-1)\ln 3} \rightarrow \ln 3 e^{(x-1)\ln 3}$ or $3^{x-1} =$,	
	M1: Differentiates implicitly to include either ±2	$\frac{dx}{dx} \frac{dy}{dx}$ or $\pm ky \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).	
	B1 : $xy \to + y + x \frac{dy}{dx}$		
	1 st A1: + $y + x \frac{dy}{dx} - 2y \frac{dy}{dx} = 0$ Note: The "= 0" can be implied by rearrant	ne 1 st A0 follows from an award of the 2 nd B0.	
		o $3^{x-1} \ln 3 + y = 2y \frac{dy}{dx} - x \frac{dy}{dx}$ will get A1	(implied).
	2 nd M1: Note: This method mark is dependent up	at at	
	3 rd M1: Note: This method mark is dependent up	oon the 1st M1* mark being awarded.	
	Candidate has two differentiated terms in Note: It is possible to gain the 3 rd M1 m	$\frac{dy}{dx}$ and rearranges to make $\frac{dy}{dx}$ the subject.	
		$\frac{\ln 3}{x}$ before substituting in $x = 1$ and $y = 3$	
	2^{nd} A1: cso. Uses $3 = \ln e^3$ to achieve $\frac{dy}{dx} = \frac{1}{5} \ln \frac{dy}{dx}$	("/	
	Note: $3 = \ln e^3$ needs to be seen in their	proof.	

Implicit Differentiation

	Notes for Question	Continued	
	Alternative Method: Multiplying both sides by 3 $3^{x-1} + xy - y^2 + 5 = 0$ $3^x + 3xy - 3y^2 + 15 = 0$		
	3 +3xy - 3y +13 = 0	$3^x \rightarrow 3^x \ln 3$	B1
Aliter	$\left\{\frac{\partial y}{\partial x} \times \right\} 3^x \ln 3 + \left(3y + 3x \frac{dy}{dx}\right) - 6y \frac{dy}{dx} = 0$	Differentiates implicitly to include either $\pm \lambda x \frac{dy}{dx}$ or $\pm ky \frac{dy}{dx}$.	M1*
Way 2	(ignore) dx	$3xy \rightarrow +3y + 3x \frac{dy}{dx}$	B1
		$\dots + 3y + 3x\frac{dy}{dx} - 6y\frac{dy}{dx} = 0$	A1
	$\{(1,3) \Rightarrow \} 3^1 \ln 3 + 3(3) + (3)(1) \frac{dy}{dx} - 6(3) \frac{dy}{dx} = 0$	Substitutes $x = 1$, $y = 3$ into their differentiated equation or expression.	dM1*
	$3\ln 3 + 9 + 3\frac{dy}{dx} - 18\frac{dy}{dx} = 0 \implies 9 + 3\ln 3 = 15\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{9 + 3\ln 3}{15} \left\{ = \frac{3 + \ln 3}{5} \right\}$ $\frac{dy}{dx} = \frac{1}{5} \left(\ln e^3 + \ln 3 \right)$		dM1*
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \left(\ln \mathrm{e}^3 + \ln 3 \right) = \frac{1}{5} \ln \left(3\mathrm{e}^3 \right)$	Uses $3 = \ln e^3$ to achieve $\frac{dy}{dx} = \frac{1}{5} \ln (3e^3)$	A1 cso [7]
	NOTE: Only apply this scheme if the candidate has NOTE: For reference, $\frac{dy}{dx} = \frac{3y + 3^x \ln 3}{6y - 3x}$	s multiplied both sides of their equation by 3	
	NOTE: If the candidate applies this method then 3.	$xy \to +3y + 3x \frac{dy}{dx}$ must be seen for the 2 nd	B1 mark.

Question Number		Scheme	Marks
		$x^3 + 2xy - x - y^3 - 20 = 0$	
(a)		$\left\{\frac{\partial y}{\partial x} \times \right\} \frac{3x^2}{\partial x} + \left(\frac{2y + 2x\frac{dy}{dx}}{dx}\right) - 1 - 3y^2 \frac{dy}{dx} = 0$	М1 <u>А1</u> <u>В1</u>
		$3x^2 + 2y - 1 + \left(2x - 3y^2\right)\frac{dy}{dx} = 0$	dM1
		$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2}$	A1 cso
(b)	At P	$(3, -2), m(T) = \frac{dy}{dx} = \frac{3(3)^2 + 2(-2) - 1}{3(-2)^2 - 2(3)}; = \frac{22}{6} \text{ or } \frac{11}{3}$	[5]
	and e	ither T: $y2 = \frac{11}{3}(x - 3)$ see notes	M1
		or $(-2) = \left(\frac{11}{3}\right)(3) + c \implies c =,$	
	T: 11	x - 3y - 39 = 0 or $K(11x - 3y - 39) = 0$	A1 cso
			[2
	Alter	native method for part (a)	
(a)		$\left\{ \frac{\partial x}{\partial y} \times \right\} \frac{3x^2 \frac{dx}{dy}}{} + \left(\underbrace{2y \frac{dx}{dy} + 2x}_{} \right) - \underbrace{\frac{dx}{dy} - 3y^2 = 0}_{}$	M1 <u>A1</u> <u>B1</u>
		$2x - 3y^2 + \left(3x^2 + 2y - 1\right)\frac{dx}{dy} = 0$	dM1
		$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2}$	A1 cso [5
		Question Notes	
(a) General	Note	Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$ or $\frac{1 - 3x^2 - 2y}{2x - 3y^2}$ from no working is full marks.	
	Note	Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{2x - 3y^2}$ or $\frac{1 - 3x^2 - 2y}{3y^2 - 2x}$ from no working is M1A0B0M	[1A0
	Note	Few candidates will write $3x^2 + 2y + 2x dy - 1 - 3y^2 dy = 0$ leading to $\frac{dy}{dx} = \frac{3x^2 + 2y}{3y^2 - 3y}$	$\frac{y-1}{2x}$, o.e.
		This should get full marks.	
(a)	М1	Differentiates implicitly to include either $2x\frac{dy}{dx}$ or $-y^3 \to \pm ky^2\frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$)).
	A1	$x^3 \to 3x^2$ and $-x - y^3 - 20 = 0 \to -1 - 3y^2 \frac{dy}{dx} = 0$	
	B1	$2xy \to 2y + 2x \frac{\mathrm{d}y}{\mathrm{d}x}$	
	Note	If an extra term appears then award 1st A0.	

Implicit Differentiation

(a) Note ctd Note ctd Note $3x^2 + 2y + 2x\frac{dy}{dx} - 1 - 3y^2\frac{dy}{dx} \rightarrow 3x^2 + 2y - 1 = 3y^2\frac{dy}{dx} - 2x\frac{dy}{dx}$ will get 1^a A1 (implied) as the "= 0" can be implied by rearrangement of their equation dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$. Note Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg. $\frac{3x^2+2y-1}{3y^2-2x}$ cso: If the candidate's solution is not completely correct, then do not give this mark, isw: You can, however, ignore subsequent working following on from correct solution. (b) M1 Some attempt to substitute both $x=3$ and $y=-2$ into their $\frac{dy}{dx}$ which contains both x and y to find m_T and • either applies $y=-2$ (their m_T)($x=-3$), where m_T is a numerical value. • or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{1}{m^2} = \frac{1}{m^2} = \frac{1}{m$			
will get 1" A1 (implied) as the " = 0" can be implied by rearrangement of their equation. dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$. i.e. $ + (2x - 3y^2) \frac{dy}{dx} =$ Note Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$ cso: If the candidate's solution is not completely correct, then do not give this mark. Isw: You can, however, ignore subsequent working following on from correct solution. (b) M1 Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and y to find m_T and • either applies $y2 = (\text{their } m_T)(x - 3)$, where m_T is a numerical value. • or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value. Note Note Using a changed gradient (i.e. applying $\frac{1}{\text{their } \frac{\pi}{2x}}$ or $\frac{1}{\text{their } \frac{\pi}{2x}}$ or $\frac{1}{\text{their } \frac{\pi}{2x}}$ or $\frac{1}{\text{their } \frac{\pi}{2x}}$ is M0. A1 Accept any integer multiple of $11x - 3y - 3y = 0$ or $11x - 3y - 3y = 0$ or $-11x + 3y + 3y = 0$, where their tangent equation is equal to 0. cso A correct solution is required from a correct $\frac{dy}{dy}$. isw You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . A1 $x^3 \rightarrow 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \rightarrow -\frac{dx}{dy} \rightarrow 3y^2 = 0$ B1 $2xy - 2y\frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		Note	$3x^2 + 2y + 2x\frac{dy}{dx} - 1 - 3y^2\frac{dy}{dx} \rightarrow 3x^2 + 2y - 1 = 3y^2\frac{dy}{dx} - 2x\frac{dy}{dx}$
dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$. i.e. $ + (2x - 3y^2) \frac{dy}{dx} =$ Note Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1. A1 For $\frac{1 - 2y - 3x^2}{2x - 3y^2}$ or equivalent. Eg: $\frac{3x^2 + 2y - 1}{3y^2 - 2x}$ cso: If the candidate's solution is not completely correct, then do not give this mark. isw: You can, however, ignore subsequent working following on from correct solution. (b) M1 Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and y to find m_T and • either applies $y2 = (\text{their } m_T)(x - 3)$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dx}{dx}}$ or $\frac{1}{\text{their } \frac{dx}{dx}}$ is M0). A1 Accept any integer multiple of $11x - 3y - 3y = 0$ or $11x - 3y - 3y = 0$ or $-11x + 3y + 3y = 0$, where their tangent equation is equal to 0. cso A correct solution is required from a correct $\frac{dy}{dx}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . (a) Differentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \to \pm kx^2\frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$ B1 $2xy - 2y\frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. For $\frac{1 - 2y - 3x^2}{2x - 3y^2}$ or equivalent. Eg: $\frac{3x^2 + 2y - 1}{3y^2 - 2x}$			will get 1st A1 (implied) as the "= 0" can be implied by rearrangement of their equation.
ie $+(2x-3y^2)\frac{dy}{dx} =$ Note Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$ cso: If the candidate's solution is not completely correct, then do not give this mark. isw: You can, however, ignore subsequent working following on from correct solution. (b) M1 Some attempt to substitute both $x=3$ and $y=-2$ into their $\frac{dy}{dx}$ which contains both x and y to find m_T and • either applies $y2=(\text{their }m_T)(x-3)$, where m_T is a numerical value. • or finds c by solving $(-2)=(\text{their }m_T)(3)+c$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{-1}{\text{their }\frac{dy}{dx}}$ or $\frac{1}{\text{their }\frac{dy}{dx}}$ is M0). A1 Accept any integer multiple of $11x-3y-39=0$ or $11x-39-3y=0$ or $-11x+3y+39=0$, where their tangent equation is equal to 0. cso A correct solution is required from a correct $\frac{dy}{dy}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y (Ignore $\left(\frac{dx}{dy}\right)$). A1 $x^3 \to 3x^2\frac{dx}{dy}$ and $-x-y^3-20=0 \to -\frac{dx}{dy}$ or $x^3 \to \pm kx^2\frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$ (Ignore $\frac{dx}{dy}$) $+2x$ dP1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		dM1	
Note Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$ cso: If the candidate's solution is not completely correct, then do not give this mark. isw: You can, however, ignore subsequent working following on from correct solution. (b) M1 Some attempt to substitute both $x=3$ and $y=-2$ into their $\frac{dy}{dx}$ which contains both x and y to find m_T and • either applies $y=-2=(\text{their }m_T)(x-3)$, where m_T is a numerical value. • or finds c by solving $(-2)=(\text{their }m_T)(3)+c$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{-1}{\det ix}$ or $\frac{1}{\det ix}$ is M0). A1 Accept any integer multiple of $11x-3y-39=0$ or $11x-39-3y=0$ or $-11x+3y+39=0$, where their tangent equation is equal to 0. cso A correct solution is required from a correct $\frac{dy}{dx}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . (a) M1 Differentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \to \pm kx^2\frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$ (Ignore $\left(\frac{dx}{dy}=\right)$). A1 $x^3 \to 3x^2\frac{dx}{dy}$ and $-x-y^3-20=0 \to -\frac{dx}{dy}-3y^2=0$ B1 $2xy \to 2y\frac{dx}{dy}+2x$ dP dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$			An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.
A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$ cso: If the candidate's solution is not completely correct, then do not give this mark isw: You can, however, ignore subsequent working following on from correct solution. (b) M1 Some attempt to substitute both $x=3$ and $y=-2$ into their $\frac{dy}{dx}$ which contains both x and y to find m_T and • either applies $y=-2=(\text{their }m_T)(x-3)$, where m_T is a numerical value. • or finds c by solving $(-2)=(\text{their }m_T)(3)+c$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{-1}{\text{their }\frac{dy}{dx}}$ or $\frac{1}{\text{their }\frac{dy}{dx}}$ is M0). A1 Accept any integer multiple of $11x-3y-39=0$ or $11x-39-3y=0$ or $-11x+3y+39=0$, where their tangent equation is equal to 0. c3o A correct solution is required from a correct $\frac{dy}{dy}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . (Ignore $\left(\frac{dx}{dy}\right)$). A1 $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x-y^3-20=0 \to -\frac{dx}{dy}-3y^2=0$ B1 $2xy \to 2y \frac{dx}{dy}+2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$			ie + $(2x - 3y^2)\frac{dy}{dx} =$
cso: If the candidate's solution is not completely correct, then do not give this mark. isw: You can, however, ignore subsequent working following on from correct solution. (b) M1 Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and y to find m_T and • either applies $y = -2 = (\text{their } m_T)(x = 3)$, where m_T is a numerical value. • or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ is M0). Accept any integer multiple of $11x = 3y = 39 = 0$ or $11x = 3y = 3y = 0$ or $-11x + 3y + 39 = 0$, where their tangent equation is equal to 0. cso A correct solution is required from a correct $\frac{dy}{dx}$. isw: You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . (a) M1 Differentiates implicitly to include either $2y \frac{dx}{dy}$ or $x^3 \to \pm kx^2 \frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$. (Ignore $\left(\frac{dx}{dy} = \right)$). A1 $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x = y^3 = 20 = 0 \to -\frac{dx}{dy} = 3y^2 = 0$ B1 $2xy \to 2y \frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. F1 $\frac{dx}{dy} = \frac{1}{2x^2 - 3x^2}$ or equivalent. Eg: $\frac{3x^2 + 2y - 1}{3y^2 - 2x}$		Note	Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1.
isw: You can, however, ignore subsequent working following on from correct solution. (b) M1 Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and y to find m_T and • either applies $y = -2 = (\text{their } m_T)(x = 3)$, where m_T is a numerical value. • or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{\Phi}{dx}}$ or $\frac{1}{\text{their } \frac{\Phi}{dx}}$ is M0). A1 Accept any integer multiple of $11x = 3y = 39 = 0$ or $11x = 39 = 3y = 0$ or $-11x + 3y + 39 = 0$, where their tangent equation is equal to 0. Cso A correct solution is required from a correct $\frac{dy}{dx}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . (Ignore $\left(\frac{dx}{dy} = \right)$). A1 $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x = y^3 = 20 = 0 \to -\frac{dx}{dy} = 3y^2 = 0$ B1 $2xy \to 2y \frac{dx}{dy} + 2x$ dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		A1	For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$
to find m_T and • either applies $y - 2 = (\text{their } m_T)(x - 3)$, where m_T is a numerical value. • or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dv}{dx}}$ or $\frac{1}{\text{their } \frac{dv}{dx}}$ is M0). At Cecpt any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$, where their tangent equation is equal to 0. A correct solution is required from a correct $\frac{dy}{dx}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . (Ignore $\left(\frac{dx}{dy}\right)$). A1 $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$ B1 $2xy \to 2y \frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$. , ,
• either applies $y-2=(\text{their } m_T)(x-3)$, where m_T is a numerical value. • or finds c by solving $(-2)=(\text{their } m_T)(3)+c$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{\Phi}{dx}}$ or $\frac{1}{\text{their } \frac{\Phi}{dx}}$ is M0). Accept any integer multiple of $11x-3y-39=0$ or $11x-3y-3y=0$ or $-11x+3y+39=0$, where their tangent equation is equal to 0. cso A correct solution is required from a correct $\frac{dy}{dx}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . (Ignore $\left(\frac{dx}{dy}\right)$). A1 $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x-y^3-20=0 \to -\frac{dx}{dy}-3y^2=0$ B1 $2xy \to 2y \frac{dx}{dy}+2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$	(b)	M1	Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and y
• or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value. Note Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dv}{dx}}$ or $\frac{1}{\text{their } \frac{dv}{dx}}$ is M0). Al Accept any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$, where their tangent equation is equal to 0. cso A correct solution is required from a correct $\frac{dv}{dx}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to v (Ignore $\left(\frac{dx}{dy} = \right)$). Al $v^3 \to 3x^2 \frac{dx}{dy}$ and $v^3 \to 20 = 0 \to -\frac{dx}{dy} = 0$ B1 $v^3 \to 3x^2 \frac{dx}{dy}$ and $v^3 \to 20 = 0 \to -\frac{dx}{dy} = 0$ B1 $v^3 \to 3x^2 \frac{dx}{dy} = 0$ A1 their $v^3 \to 3x^2 \frac{dx}{dy} = 0$ A2 the first method mark being awarded. A3 attempt to factorise out all the terms in $v^3 \to 20$ and $v^3 \to 20$			·
Note Using a changed gradient (i.e. applying $\frac{-1}{\text{their}} \frac{\Phi}{\Phi}$ or $\frac{1}{\text{their}} \frac{\Phi}{\Phi}$ is M0). At Accept any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$, where their tangent equation is equal to 0. Cso A correct solution is required from a correct $\frac{dy}{dy}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . (a) Differentiates implicitly to include either $2y \frac{dx}{dy}$ or $x^3 \to \pm kx^2 \frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$. (Ignore $\left(\frac{dx}{dy} = \right)$). At $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$ B1 $2xy \to 2y \frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1 - 2y - 3x^2}{2x - 3y^2}$ or equivalent. Eg: $\frac{3x^2 + 2y - 1}{3y^2 - 2x}$			 either applies y − −2 = (their m_T)(x − 3), where m_T is a numerical value.
A1 Accept any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$, where their tangent equation is equal to 0. Cso A correct solution is required from a correct $\frac{dy}{dy}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y (Ignore $\left(\frac{dx}{dy} = \right)$). A1 $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$ B1 $2xy \to 2y \frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$			 or finds c by solving (-2) = (their m_T)(3) + c, where m_T is a numerical value.
where their tangent equation is equal to 0. A correct solution is required from a correct $\frac{dy}{dy}$. You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y . (Ignore $\left(\frac{dx}{dy} = \right)$). A1 $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$ B1 $2xy \to 2y \frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		Note	at at
isw You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y M1 Differentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \to \pm kx^2\frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$ (Ignore $\left(\frac{dx}{dy} = \right)$). A1 $x^3 \to 3x^2\frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$ B1 $2xy \to 2y\frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		A1	
isw You can ignore subsequent working following a correct solution. Alternative method for part (a): Differentiating with respect to y M1 Differentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \to \pm kx^2\frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$ (Ignore $\left(\frac{dx}{dy} = \right)$). A1 $x^3 \to 3x^2\frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$ B1 $2xy \to 2y\frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		cso	A correct solution is required from a correct $\frac{dy}{dy}$.
(Ignore $\left(\frac{dx}{dy} = \right)$). A1 $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$ B1 $2xy \to 2y \frac{dx}{dy} + 2x$ dP dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		isw	
(Ignore $\left(\frac{dx}{dy} = \right)$). A1 $x^3 \to 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$ B1 $2xy \to 2y \frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1 - 2y - 3x^2}{2x - 3y^2}$ or equivalent. Eg: $\frac{3x^2 + 2y - 1}{3y^2 - 2x}$		Altern	ative method for part (a): Differentiating with respect to y
A1 $x^3 oup 3x^2 rac{dx}{dy}$ and $-x - y^3 - 20 = 0 oup - rac{dx}{dy} - 3y^2 = 0$ B1 $2xy oup 2y rac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $rac{dx}{dy}$ as long as there are at least two terms in $rac{dx}{dy}$. A1 For $rac{1 - 2y - 3x^2}{2x - 3y^2}$ or equivalent. Eg: $rac{3x^2 + 2y - 1}{3y^2 - 2x}$. (a)	М1	Differentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \to \pm kx^2\frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$
B1 $2xy \rightarrow 2y \frac{dx}{dy} + 2x$ dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$			$(Ignore \left(\frac{dx}{dy} = \right)).$
dM1 dependent on the first method mark being awarded. An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		A1	$x^{3} \to 3x^{2} \frac{dx}{dy}$ and $-x - y^{3} - 20 = 0 \to -\frac{dx}{dy} - 3y^{2} = 0$
An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$. A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		B1	$2xy \rightarrow 2y \frac{dx}{dy} + 2x$
A1 For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		dM1	dependent on the first method mark being awarded.
			An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$.
cso: If the candidate's solution is not completely correct, then do not give this mark.		A1	For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$
			cso: If the candidate's solution is not completely correct, then do not give this mark.

Question Number	Scheme		Marks
	$x^2 + y^2 + 10x + 2y - 4xy = 10$		
(a)	$\left\{\frac{\cancel{x}\cancel{y}}{\cancel{x}\cancel{x}} \times\right\} \underline{2x + 2y\frac{dy}{dx} + 10 + 2\frac{dy}{dx}} - \left(\underline{4y + 4x\frac{dy}{dx}}\right) = \underline{0}$	See notes	М1 <u>А1 М1</u>
	$2x + 10 - 4y + (2y + 2 - 4x)\frac{dy}{dx} = 0$	Dependent on the first M1 mark.	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x+10-4y}{4x-2y-2}$		
	Simplifying gives $\frac{dy}{dx} = \frac{x+5-2y}{2x-y-1} \left\{ = \frac{-x-5+2y}{-2x+y+1} \right\}$		A1 cso oe
			[5]
(b)	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \right\} x + 5 - 2y = 0$ So $x = 2y - 5$,		M1
	$(2y-5)^2 + y^2 + 10(2y-5) + 2y - 4(2y-5)y = 10$		M1
	$4y^2 - 20y + 25 + y^2 + 20y - 50 + 2y - 8y^2 + 20y = 10$ gives $-3y^2 + 22y - 35 = 0$ or $3y^2 - 22y + 35 = 0$	$3y^2 - 22y + 35 = 0$	A1 oe
	(3y-7)(y-5)=0 and $y=$	see notes Method mark for solving a quadratic equation.	ddM1
	$y = \frac{7}{2}, 5$	$\{y=\}\frac{7}{2}, 5$	A1 cao
	3	3	[5]
	Alternative method for part (b)		
(b)	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies \right\} x + 5 - 2y = 0$		M1
	So $y = \frac{x+5}{2}$,		
	$x^{2} + \left(\frac{x+5}{2}\right)^{2} + 10x + 2\left(\frac{x+5}{2}\right) - 4x\left(\frac{x+5}{2}\right) = 10$		M1
	$x^{2} + \frac{x^{2} + 10x + 25}{4} + 10x + x + 5 - 2x^{2} - 10x = 10$		
	$4x^2 + x^2 + 10x + 25 + 40x + 4x + 20 - 8x^2 - 40x = 40$	$3x^2 - 14x - 5 = 0$	
	gives $-3x^2 + 14x + 5 = 0$ or $3x^2 - 14x - 5 = 0$	see notes	A1 oe
	(3x+1)(x-5) = 0, x = $y = \frac{-\frac{1}{3}+5}{2}, \frac{5+5}{2}$	Solves a quadratic and finds at least one value for y.	ddM1
	$y = \frac{7}{3}, 5$	${y =} \frac{7}{3}, 5$	A1 cao
			[5]
			10

		Question Notes
(a)	M1	Differentiates implicitly to include either $\pm 4x\frac{\mathrm{d}y}{\mathrm{d}x}$ or $y^2 \to 2y\frac{\mathrm{d}y}{\mathrm{d}x}$ or $2y \to 2\frac{\mathrm{d}y}{\mathrm{d}x}$. (Ignore $\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right)$).
	A1	$x^2 + y^2 + 10x + 2y \rightarrow 2x + 2y \frac{dy}{dx} + 10 + 2 \frac{dy}{dx}$ and $10 \rightarrow 0$
	М1	$-4xy \rightarrow \pm 4y \pm 4x \frac{dy}{dx}$
	Note	If an extra term appears then award 1st A0.
	Note	$2x + 2y\frac{dy}{dx} + 10 + 2\frac{dy}{dx} - 4y - 4x\frac{dy}{dx} \rightarrow 2x + 10 - 4y = -2y\frac{dy}{dx} - 2\frac{dy}{dx} + 4x\frac{dy}{dx}$
		will get 1st A1 (implied) as the "= 0"can be implied by rearrangement of their equation.
	dM1	dependent on the first method mark being awarded.
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.
	A1	$\frac{x+5-2y}{2x-y-1}$ or $\frac{-x-5+2y}{-2x+y+1}$ (must be simplified).
	cso:	If the candidate's solution is not completely correct, then do not give this mark.
(b)	М1	Sets the numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero) oe.
	NOTE M1	If the numerator involves one variable only then <i>only</i> the 1 st M1 mark is possible in part (b). Substitutes their x or their y into the printed equation to give an equation in one variable only.
	A1	For obtaining either $-3y^2 + 22y - 35 = 0$ or $3y^2 - 22y + 35 = 0$
	Note	This mark can also awarded for a correct three term equation, eg. either $-3y^2 + 22y = 35$
		$3y^2 - 22y = -35$ or $3y^2 + 35 = 22y$ are all fine for A1.
	ddM1	Dependent on the previous 2 M marks.
		 See notes at the beginning of the mark scheme: Method mark for solving a 3 term quadratic (3y - 7)(y - 5) = 0 ⇒ y =
		• $y = \frac{22 \pm \sqrt{(-22)^2 - 4(3)(35)}}{2(3)}$
		• $y^2 - \frac{22}{3}y - \frac{35}{3} = 0 \implies \left(y - \frac{11}{3}\right)^2 - \frac{121}{9} + \frac{35}{3} = 0 \implies y = \dots$
		 Or writes down at least one correct y- root from their quadratic equation. This is usually found from their calculator.
	Note	If a candidate applies the alternative method then they also need to use their $y = \frac{x+5}{2}$
		in order to find at least one value for y in order to gain the final M1.
	A1	$y = \frac{7}{3}$, 5. cao. (2.33 or 2.3 without reference to $\frac{7}{3}$ or $2\frac{1}{3}$ is not allowed for this mark.)
	Note	It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator
		for $\frac{dy}{dx}$) to gain all 5 marks in part (b).

Question Number	Scheme		Marks
	$x^2 - 3xy - 4y^2 + 64 = 0$		
(a)	$\left\{\frac{\cancel{x}\cancel{y}}{\cancel{x}\cancel{x}} \times \right\} \underline{2x} - \left(\underline{3y + 3x}\frac{dy}{dx}\right) - 8y\frac{dy}{dx} = \underline{0}$		M1 <u>A1</u> <u>M1</u>
	$2x - 3y + (-3x - 8y)\frac{dy}{dx} = 0$		dM1
	$\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y} \text{ or } \frac{3y - 2x}{-3x - 8y}$	o.e.	A1 cso
			<u>[5]</u> .
(b)	$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \end{cases}$	$\begin{cases} 2x - 3y = 0 \end{cases}$	M1
	$y = \frac{2}{3}x$	$x = \frac{3}{2}y$	A1ft
	$x^2 - 3x\left(\frac{2}{3}x\right) - 4\left(\frac{2}{3}x\right)^2 + 64 = 0$	$\left(\frac{3}{2}y\right)^2 - 3\left(\frac{3}{2}y\right)y - 4y^2 + 64 = 0$	dM1
	$x^{2} - 2x^{2} - \frac{16}{9}x^{2} + 64 = 0 \Rightarrow -\frac{25}{9}x^{2} + 64 = 0$	$\frac{9}{4}y^2 - \frac{9}{2}y^2 - 4y^2 + 64 = 0 \implies -\frac{25}{4}y^2 + 64 = 0$	
	$\left\{ \Rightarrow x^2 = \frac{576}{25} \Rightarrow \right\} x = \frac{24}{5} \text{or } -\frac{24}{5}$	$\left\{ \Rightarrow y^2 = \frac{256}{25} \Rightarrow \right\} y = \frac{16}{5} \text{or } -\frac{16}{5}$	A1 cso
	When $x = \pm \frac{24}{5}$, $y = \frac{2}{3} \left(\frac{24}{5} \right)$ and $-\frac{2}{3} \left(\frac{24}{5} \right)$	When $y = \pm \frac{16}{5}$, $x = \frac{3}{2} \left(\frac{16}{5} \right)$ and $-\frac{3}{2} \left(\frac{16}{5} \right)$	
	$\left(\frac{24}{5}, \frac{16}{5}\right)$ and $\left(-\frac{24}{5}, -\frac{16}{5}\right)$ or $x = \frac{24}{5}$,	$v = \frac{16}{2}$ and $x = -\frac{24}{2}$, $v = -\frac{16}{2}$	ddM1
	(5.5) (5.5) 5.	5 5 5 cso	A1
			[6] 11
	Alternative method for part (a)		
(a)	$\left\{\frac{\partial \mathbf{x}}{\partial y} \times \right\} \underline{2x\frac{dx}{dy}} - \left(\underline{3y\frac{dx}{dy} + 3x}\right) - \underline{8y} = \underline{0}$		M1 <u>A1</u>
(-)	[My] <u>dy (dy) </u> -		<u>M1</u>
	$(2x-3y)\frac{\mathrm{d}x}{\mathrm{d}y} - 3x - 8y = 0$		dM1
	$\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y} \text{ or } \frac{3y - 2x}{-3x - 8y}$	o.e.	A1 cso
			[5]

		Question Notes	
(a) General	Note	Writing down $\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y}$ or $\frac{3y - 2x}{-3x - 8y}$ from no working is full marks	
	Note	Writing down $\frac{dy}{dx} = \frac{2x - 3y}{-3x - 8y}$ or $\frac{3y - 2x}{3x + 8y}$ from no working is M1A0B1M1A0	
	Note	Few candidates will write $2x dx - 3y dx - 3x dy - 8y dy = 0$ leading to $\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y}$, o.e.	
		This should get full marks.	

		4. 4. (4.)
(a)	M1	Differentiates implicitly to include either $\pm 3x \frac{dy}{dx}$ or $-4y^2 \rightarrow \pm ky \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).
	Al	Both $x^2 \to 2x$ and $-4y^2 + 64 = 0 \to -8y \frac{dy}{dx} = 0$
	Note	If an extra term appears then award A0.
	M1	$-3xy \rightarrow -3x\frac{dy}{dx} - 3y$ or $-3x\frac{dy}{dx} + 3y$ or $3x\frac{dy}{dx} - 3y$ or $3x\frac{dy}{dx} + 3y$
	Note	$2x - 3y - 3x\frac{dy}{dx} - 8y\frac{dy}{dx} \rightarrow 2x - 3y = 3x\frac{dy}{dx} + 8y\frac{dy}{dx}$
		will get 1 st A1 (implied) as the "=0" can be implied by the rearrangement of their equation.
	dM1	dependent on the FIRST method mark being awarded.
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.
		i.e + $(-3x - 8y)\frac{dy}{dx}$ = or = $(3x + 8y)\frac{dy}{dx}$. (Allow combining in 1 variable).
	4.7	$\frac{2x-3y}{3x+8y}$ or $\frac{3y-2x}{-3x-8y}$ or equivalent.
	Al	$3x+8y$ or ${-3x-8y}$ or equivalent.
	Note	cso If the candidate's solution is not completely correct, then do not give this mark.
	Note	You cannot recover work for part (a) in part (b).
(b)	M1	Sets their numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero) o.e.
	Note	1 st M1 can also be gained by setting $\frac{dy}{dx}$ equal to zero in their " $2x - 3y - 3x \frac{dy}{dx} - 8y \frac{dy}{dx} = 0$ "
	Note Note	If their numerator involves one variable only then only the 1 st M1 mark is possible in part (b). If their numerator is a constant then no marks are available in part (b)
	Note	If their numerator is in the form $\pm ax^2 \pm by = 0$ or $\pm ax \pm by^2 = 0$ then the first 3 marks are
		possible in part (b).
		dy $2x-3y$
	Note	$\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y} = 0 \text{ is not sufficient for M1.}$
	Alft	Either
		• Sets $2x - 3y$ to zero and obtains either $y = \frac{2}{3}x$ or $x = \frac{3}{2}y$
		 the follow through result of making either y or x the subject from setting their numerator
		of their $\frac{dy}{dx}$ equal to zero
	dM1	dependent on the first method mark being awarded.
		Substitutes either their $y = \frac{2}{3}x$ or their $x = \frac{3}{2}y$ into the original equation to give an equation in
		one variable only.
	Al	Obtains either $x = \frac{24}{5}$ or $-\frac{24}{5}$ or $y = \frac{16}{5}$ or $-\frac{16}{5}$, (or equivalent) by correct solution only.
		i.e. You can allow for example $x = \frac{48}{10}$ or 4.8, etc.
	Note	$x = \sqrt{\frac{576}{25}}$ (not simplified) or $y = \sqrt{\frac{256}{25}}$ (not simplified) is not sufficient for A1.

(b)	ddM1	dependent on both previous method marks being awarded in this part.
ctd		Method 1 Either:
		• substitutes their x into their $y = \frac{2}{3}x$ or substitutes their y into their $x = \frac{3}{2}y$, or
		• substitutes the other of their $y = \frac{2}{3}x$ or their $x = \frac{3}{2}y$ into the original equation,
		and achieves either:
		exactly two sets of two coordinates or
		 exactly two distinct values for x and exactly two distinct values for y.
		Method 2
		Either:
		• substitutes their first x-value, x_1 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain one y-value, y_1 and
		substitutes their second x-value, x_2 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain 1 y-value y_2 or
		• substitutes their first y-value, y_1 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain one x-value x_1 and
		substitutes their second y-value, y_2 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain one x-value x_2 .
m jó	Note	Three or more sets of coordinates given (without identification of two sets of coordinates) is ddM0.
	Al	Both $\left(\frac{24}{5}, \frac{16}{5}\right)$ and $\left(-\frac{24}{5}, -\frac{16}{5}\right)$, only by cso. Note that decimal equivalents are fine.
	Note	Also allow $x = \frac{24}{5}$, $y = \frac{16}{5}$ and $x = -\frac{24}{5}$, $y = -\frac{16}{5}$ all seen in their working to part (b).
	Note	Allow $x = \pm \frac{24}{5}$, $y = \pm \frac{16}{5}$ for 3 rd A1.
	Note	$x = \pm \frac{24}{5}$, $y = \pm \frac{16}{5}$ followed by eg. $\left(\frac{16}{5}, \frac{24}{5}\right)$ and $\left(-\frac{16}{5}, -\frac{24}{5}\right)$
	Note	(eg. coordinates stated the wrong way round) is 3 rd A0. It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator
		for $\frac{dy}{dx}$) to gain all 6 marks in part (b).
	Note	Decimal equivalents to fractions are fine in part (b). i.e. (4.8, 3.2) and (-4.8, -3.2).
	Note	$\left(\frac{24}{5}, \frac{16}{5}\right)$ and $\left(-\frac{24}{5}, -\frac{16}{5}\right)$ from no working is M0A0M0A0M0A0.
	Note	Candidates could potentially lose the final 2 marks for setting both their numerator and denominator
	Note	to zero. No credit in this part can be gained by only setting the denominator to zero.

Implicit Differentiation

Question Number	Scheme			Notes		Marks
	$2x^2y + 2x + 4y - \cos(\pi y) = 17$					
Way 1	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}} \times\right\} \left(\underline{4xy + 2x^2 \frac{dy}{dx}}\right) + 2 + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} = 0$				M1 <u>A1</u> <u>B1</u>	
	$\frac{dy}{dx}(2x^2 + 4 + \pi \sin(\pi y)) + 4xy +$	2=0				dM1
	$\left\{ \frac{dy}{dx} = \right\} \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)}$			Correct answ or equivale		A1 cso
						[5]
(h)	$\Delta t \begin{pmatrix} 2 & 1 \end{pmatrix} = \frac{dy}{dt} = \frac{-4(3)(\frac{1}{2}) - 2}{2}$	\8_\	Sul	bstituting $x = 3$ & $y =$	~	
(b)	At $\left(3, \frac{1}{2}\right)$, $m_{\rm T} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4(3)(\frac{1}{2}) - 2}{2(3)^2 + 4 + \pi \sin(\frac{1}{2}\pi)}$	$\left[\frac{22 + \pi}{}\right]$	into a	an equation involving d	<u>y</u> x	M1
	$m_{\rm N} = \frac{22 + \pi}{9}$	Applying	$m_N = \frac{1}{2}$	$\frac{-1}{m_T}$ to find a numerical	n _N	M1
	8	Ca	an be i	implied by later worki	ng	
	• $y - \frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(x - 3)$ • $\frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(3) + c \Rightarrow c = \frac{1}{2} - \frac{66 + 3\pi}{8}$ $\Rightarrow y = \left(\frac{22 + \pi}{8}\right)x + \frac{1}{2} - \frac{66 + 3\pi}{8}$ Cuts x -axis $\Rightarrow y = 0$ $\Rightarrow -\frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(x - 3)$	$y = m_N x$ with a m	umerio 1 terms	$y - \frac{1}{2} = m_{N}(x - 3)$ here $\frac{1}{2} = (\text{their } m_{N})3 + \frac{1}{2}$ and $m_{N} \neq m_{T}$) where m_{N} s of π and sets $y = 0$ their normal equations $\frac{6\pi + 124}{2} = \frac{62 + 3}{2}$	is in on.	dM1
	So, $\left\{ x = \frac{-4}{22 + \pi} + 3 \implies \right\} x = \frac{3\pi + 62}{\pi + 22}$	$\frac{3\pi}{\pi}$ +	- 22	or $\frac{6\pi + 124}{2\pi + 44}$ or $\frac{62 + 3}{22 + 44}$	π	A1 o.e.
					\dashv	[4] 9
(a) Way 2	$\left\{\frac{\partial \mathbf{x}}{\partial \mathbf{y}} \times \right\} \left(\underbrace{\frac{\mathbf{d}x}{\mathbf{d}y} + 2x^2} \right) + 2\frac{\mathbf{d}x}{\mathbf{d}y} + 4 + \pi \sin^2 \frac{\mathbf{d}x}{\mathbf{d}y} + 4 + \pi $	$n(\pi y) = 0$				M1 <u>A1 B1</u>
	$\frac{dx}{dy}(4xy+2) + 2x^2 + 4 + \pi \sin(\pi y) = 0$			T	dM1	
	$\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)}$ Correct answer or equivalent			A1 cso		
						[5]

		Question Notes
(a)	Note	Writing down from no working
		• $\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)}$ or $\frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)}$ scores M1A1B1M1A1
		$\bullet \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4xy + 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ scores M1A0B1M1A0}$
	Note	Few candidates will write $4xy dx + 2x^2 dy + 2 dx + 4 dy + \pi \sin(\pi y) dy = 0$ leading to
		$\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)}$ or equivalent. This should get full marks.

		Question Notes Continued			
(a) Way 1	M1	Differentiates implicitly to include either $2x^2 \frac{dy}{dx}$ or $4y \to 4\frac{dy}{dx}$ or $-\cos(\pi y) \to \pm \lambda \sin(\pi y) \frac{dy}{dx}$			
		(Ignore $\left(\frac{dy}{dx} = \right)$). λ is a constant which can be 1.			
	1st A1	$2x + 4y - \cos(\pi y) = 17 \rightarrow 2 + 4\frac{dy}{dx} + \pi \sin(\pi y)\frac{dy}{dx} = 0$			
	Note	$4xy + 2x^{2}\frac{dy}{dx} + 2 + 4\frac{dy}{dx} + \pi \sin(\pi y)\frac{dy}{dx} \to 2x^{2}\frac{dy}{dx} + 4\frac{dy}{dx} + \pi \sin(\pi y)\frac{dy}{dx} = -4xy - 2$			
		will get 1^{st} A1 (implied) as the "= 0" can be implied by the rearrangement of their equation.			
	В1	$2x^2y \to 4xy + 2x^2 \frac{dy}{dx}$			
	Note	If an extra term appears then award 1st A0.			
	dM1	Dependent on the first method mark being awarded.			
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.			
		ie. $\frac{dy}{dx}(2x^2 + 4 + \pi \sin(\pi y)) + \dots = \dots$			
	Note	Writing down an extra $\frac{dy}{dx} =$ and then including it in their factorisation is fine for dM1.			
	Note	Final A1 cso: If the candidate's solution is not completely correct, then do not give this mark.			
	Note	Final A1 isw: You can, however, ignore subsequent working following on from correct solution.			
(a)	Way 2	Apply the mark scheme for Way 2 in the same way as Way 1.			
(b)	1st M1	M1 can be gained by seeing at least one example of substituting $x = 3$ and at least one example of			
		substituting $y = \frac{1}{2}$. E.g. " $-4xy$ " \rightarrow " -6 " in their $\frac{dy}{dx}$ would be sufficient for M1, unless it is clear			
		that they are instead applying $x = \frac{1}{2}$, $y = 3$.			
	3rd M1	is dependent on the first M1.			
	Note	The 2 nd M1 mark can be implied by later working.			
		Eg. Award 2 nd M1 3 rd M1 for $\frac{\frac{1}{2}}{3-x} = \frac{-1}{\text{their } m_T}$			
	Note	We can accept $\sin \pi$ or $\sin \left(\frac{\pi}{2}\right)$ as a numerical value for the 2 nd M1 mark.			
		But, $\sin \pi$ by itself or $\sin \left(\frac{\pi}{2}\right)$ by itself are not allowed as being in terms of π for the 3 rd M1 mark.			
		The 3 rd M1 can be accessed for terms containing $\pi \sin\left(\frac{\pi}{2}\right)$.			

Question				
Number	Scheme		Notes	Marks
	$4x^2 - y^3 - 4xy + 2^y = 0$			
(a) Way 1	$\left\{\frac{dy}{dx} \times \right\} \underbrace{8x - 3y^2 \frac{dy}{dx}}_{=} = \underbrace{-4y - 4x \frac{dy}{dx}}_{=} + \underbrace{2^y \ln 2 \frac{dy}{dx}}_{=}$	= 0		MI <u>A1 M1</u> B1
	$8(-2) - 3(4)^2 \frac{dy}{dx} - 4(4) - 4(-2) \frac{dy}{dx} + 2^4 \ln 2 \frac{dy}{dx}$	= 0 depen	dent on the first M mark	dM1
	$8(-2) - 3(4)^{2} \frac{dy}{dx} - 4(4) - 4(-2) \frac{dy}{dx} + 2^{4} \ln 2 \frac{dy}{dx} = $ $-16 - 48 \frac{dy}{dx} - 16 + 8 \frac{dy}{dx} + 16 \ln 2 \frac{dy}{dx} = $ $\frac{dy}{dx} = \frac{32}{40 + 16 \ln 2} \text{ or } \frac{-32}{40 - 16 \ln 2} \text{ or } \frac{-32}{5 + 16 \ln 2}$	0		
	$\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2}$ or $\frac{-32}{40 - 16 \ln 2}$ or $\frac{-32}{-5 + 16 \ln 2}$	$\frac{32}{-40+16 \ln 2}$ or $\frac{-32}{40-16 \ln 2}$ or $\frac{4}{-5+2 \ln 2}$ or $\frac{4}{-5+\ln 4}$ or exact equivalent		
	NOTE: You can recover work			[6]
(b)	e.g. $m_{\rm N} = \frac{-40 + 16 \ln 2}{-32}$ or $\frac{40 - 16 \ln 2}{32}$ App	e.g. $m_{\text{N}} = \frac{-40 + 16 \ln 2}{-32}$ or $\frac{40 - 16 \ln 2}{32}$ Applying $m_{\text{N}} = \frac{-1}{m_{\text{T}}}$ to find a numerical m_{N}		
	(40, 161-2)	Can be	implied by later working	
	• $y-4=\left(\frac{40-16\ln 2}{32}\right)(x-2)$		Using a numerical	
	(32)		$m_{N} (\neq m_{T})$, either	
	Cuts views - v. 0 - v. 40 -	-16lm2)(a)	$y-4=m_{\rm N}(x2)$	M1
	Cuts y-axis $\Rightarrow x = 0 \Rightarrow y - 4 = $	normal equation		
	(40, 161-2)			
	• $4 = \left(\frac{40 - 16 \ln 2}{32}\right)(-2) + c$		$4 = (\text{their } m_N)(-2) + c$	
	$\begin{cases} \Rightarrow c = 4 + \frac{40 - 16 \ln 2}{16}, \text{ so } y = \frac{104 - 16 \ln 2}{16} \end{cases}$	⇒}		
	<i>L</i>	2 2		
	Note: Allow exact equivalents in the for	rm p - ln 2 fo	r the final A mark	[3]
	(w)	<u> </u>		
(a) Way 2	$\left\{\frac{\frac{dx}{dy}}{\frac{dy}{dy}}\right\} \underbrace{8x\frac{dx}{dy} - 3y^2}_{====================================$)		M1 <u>A1 <u>M1</u> B1</u>
	$8(-2)\frac{dx}{dy} - 3(4)^2 - 4(4)\frac{dx}{dy} - 4(-2) + 2^4 \ln 2 = 0$	depen	dent on the first M mark	dM1
	$8(-2)\frac{dx}{dy} - 3(4)^2 - 4(4)\frac{dx}{dy} - 4(-2) + 2^4 \ln 2 = 0$ dependent on the first M mark $\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2}$ or $\frac{-32}{40 - 16 \ln 2}$ or $\frac{4}{-5 + 2 \ln 2}$ or $\frac{4}{-5 + \ln 4}$ or exact equivalent			A1 cso
	Note: You must be clear that Way 2 is be	ing applied be	efore you use this scheme	[6]
	Qu	estion Notes		
(a)	Note For the first four marks			
	Writing down from no working			
	• $\frac{dy}{dx} = \frac{4y - 8x}{-3y^2 - 4x + 2^y \ln 2}$ or	$\frac{8x - 4y}{3y^2 + 4x - 2^y}$	In 2 scores M1A1M1B1	
	-			
	• $\frac{dy}{dx} = \frac{8x - 4y}{-3y^2 - 4x + 2^y \ln 2}$ or	$\frac{1}{3y^2 + 4x - 2^y}$	ln 2	
	7			

Writing $8x dx - 3y^2 dy - 4y dx - 4x dy + 2^y \ln 2 dy = 0$ scores M1A1M1B1

	Question Notes Continued				
(a)	1 st M1	Differentiates implicitly to include either $\pm 4x \frac{dy}{dx}$ or $-y^3 \to \pm \lambda y^2 \frac{dy}{dx}$ or $2^y \to \pm \mu 2^y \frac{dy}{dx}$			
		(Ignore $\left(\frac{dy}{dx}\right)$). λ , μ are constants which can be 1			
	1 st <u>A1</u>	Both $4x^2 - y^3 \to 8x - 3y^2 \frac{dy}{dx}$ and $= 0 \to = 0$			
	Note	e.g. $8x - 3y^2 \frac{dy}{dx} - 4y - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} \rightarrow -3y^2 \frac{dy}{dx} - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} = 4y - 8x$			
		or e.g. $-16 - 48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} \rightarrow -48\frac{dy}{dx} + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} = 32$			
		will get 1 st A1 (implied) as the "= ()" can be implied by the rearrangement of their equation.			
	2 nd <u>M1</u>	$-4xy \rightarrow -4y - 4x \frac{dy}{dx}$ or $4y - 4x \frac{dy}{dx}$ or $-4y + 4x \frac{dy}{dx}$ or $4y + 4x \frac{dy}{dx}$			
	B1	$2^y \to 2^y \ln 2 \frac{dy}{dx}$ or $2^y \to e^{y \ln 2} \ln 2 \frac{dy}{dx}$			
	Note	If an extra term appears then award 1 st A0			
	3rd dM1	dependent on the first M mark			
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dy}{dx}$			
	Note M1 can be gained by seeing at least one example of substituting $x = -2$ and at				
	1, 1,	example of substituting $y = 4$ unless it is clear that they are instead applying $x = 4$ and $y = -2$			
		Otherwise, you will NEED to check (with your calculator) that $x = -2$, $y = 4$ that has been			
		substituted into their equation involving $\frac{dy}{dx}$			
	Note	Al cso: If the candidate's solution is not completely correct, then do not give this mark.			
	Note	isw: You can, however, ignore subsequent working following on from correct solution.			
(b)	Note	The 2 nd M1 mark can be implied by later working.			
		Eg. Award 1 st M1 and 2 nd M1 for $\frac{y-4}{2} = \frac{-1}{\text{their } m_{\text{T}} \text{ evaluated at } x = -2 \text{ and } y = 4}$			
	Note	A1: Allow the alternative answer $\{y = \} \ln \left(\frac{1}{2}\right) + \frac{13}{2\ln 2} (\ln 2)$ which is in the form $p + q \ln 2$			

(a) Way 2	1 st M1	Differentiates implicitly to include <i>either</i> $\pm 4y \frac{dx}{dy}$ or $4x^2 \rightarrow \pm \lambda x \frac{dx}{dy}$		
		(Ignore $\left(\frac{dx}{dy}\right)$). λ is a constant which can be 1		
	1 st <u>A1</u>	Both $4x^2 - y^3 \to 8x \frac{dx}{dy} - 3y^2$ and $= 0 \to = 0$		
	2 nd <u>M1</u>	$-4xy \rightarrow -4y\frac{dx}{dy} - 4x$ or $4y\frac{dx}{dy} - 4x$ or $-4y\frac{dx}{dy} + 4x$ or $4y\frac{dx}{dy} + 4x$		
	B1	$2^{y} \rightarrow 2^{y} \ln 2$		
	3 rd dM1	dependent on the first M mark		
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dx}{dy}$		