


Integration by Parts 2 - Edexcel Past Exam Questions MARK SCHEME

Question Number	Scheme	Marks		
(a)	$\int x \sin 3x dx = -\frac{1}{3} x \cos 3x - \int -\frac{1}{3} \cos 3x \{dx\}$	M1 A1		
	$= -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x \{+c\}$	A1		
(b)	$\int x^2 \cos 3x dx = \frac{1}{2} x^2 \sin 3x - \int \frac{2}{2} x \sin 3x \{dx\}$	[3] M1 A1		
(0)	$\int x^{2} \sin 3x - \frac{2}{3} \left(-\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x \right) \left\{ + c \right\}$	A1 isw		
	$\left\{ = \frac{1}{3}x^2\sin 3x + \frac{2}{9}x\cos 3x - \frac{2}{27}\sin 3x \left\{ + c \right\} \right\}$ Ignore subsequent working	[3]		
(a)	M1: Use of 'integration by parts' formula $uv - \int vu'$ (whether stated or not stated) in the correct dire			
	where $u = x \rightarrow u' = 1$ and $v' = \sin 3x \rightarrow v = k \cos 3x$ (seen or implied), where k is a positive or negative constant. (Allow $k = 1$).			
	This means that the candidate must achieve $x(k\cos 3x) - \int (k\cos 3x)$, where k is a consistent constant of the second	tant.		
	If x^2 appears after the integral, this would imply that the candidate is applying integration by parts in the wrong direction, so M0. A1: $-\frac{1}{2}x\cos 3x - \int -\frac{1}{2}\cos 3x \{dx\}$. Can be un-simplified. Ignore the $\{dx\}$.			
	A1: $-\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x$ with/without + c. Can be un-simplified.			
(b)	M1: Use of 'integration by parts' formula $uv - \int vu'$ (whether stated or not stated) in the correct	direction,		
	where $u = x^2 \rightarrow u' = 2x$ or x and $v' = \cos 3x \rightarrow v = \lambda \sin 3x$ (seen or implied), where λ is a positive negative constant. (Allow $\lambda = 1$).	ve or		
	This means that the candidate must achieve $x^2(\lambda \sin 3x) - \int 2x(\lambda \sin 3x)$, where $u' = 2x$			
	or $x^2(\lambda \sin 3x) - \int x(\lambda \sin 3x)$, where $u' = x$.			
	If x^3 appears after the integral, this would imply that the candidate is applying integration by parts in the wrong direction, so M0.			
	A1: $\frac{1}{3}x^2\sin 3x - \int \frac{2}{3}x\sin 3x \{dx\}$. Can be un-simplified. Ignore the $\{dx\}$.			
	A1: $\frac{1}{3}x^2 \sin 3x - \frac{2}{3} \left(-\frac{1}{3}x \cos 3x + \frac{1}{9} \sin 3x \right)$ with/without + c, can be un-simplified.			
	You can ignore subsequent working here. Special Case: If the candidate scores the first two marks of M1A1 in part (b), then you can award	the final A1		
	as a follow through for $\frac{1}{3}x^2\sin 3x - \frac{2}{3}$ (their follow through part(a) answer).			

Question	Scheme				
Number 2. (a)	$\int \frac{1}{x^3} \ln x dx , \qquad \begin{cases} u = \ln x \Rightarrow \frac{du}{dx} = \frac{1}{x} \\ \frac{dv}{dx} = x^{-3} \Rightarrow v = \frac{x^{-2}}{-2} = \frac{-1}{2x^2} \end{cases}$				
	In the form $\frac{\pm \lambda}{x^2} \ln x \pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x}$	М1			
	$= \frac{-1}{2x^2} \ln x - \int \frac{-1}{2x^2} \cdot \frac{1}{x} dx \qquad \qquad \frac{-1}{2x^2} \ln x \text{ simplified or un-simplified.}$	<u>A1</u>			
	$-\int \frac{-1}{2x^2} \cdot \frac{1}{x}$ simplified or un-simplified.	<u>A1</u>			
	$\left\{ = \frac{-1}{2x^2} \ln x + \frac{1}{2} \int \frac{1}{x^3} dx \right\}$				
	$= -\frac{1}{2x^{2}}\ln x + \frac{1}{2}\left(-\frac{1}{2x^{2}}\right)\{+c\} \qquad \qquad \pm \int \mu \frac{1}{x^{2}} \cdot \frac{1}{x} \rightarrow \pm \beta x^{-2}.$	dM1			
	Correct answer, with/without $+ c$	A1 [5]			
(b)	$\left\{\left[-\frac{1}{2x^2}\ln x - \frac{1}{4x^2}\right]_1^2\right\} = \left(-\frac{1}{2(2)^2}\ln 2 - \frac{1}{4(2)^2}\right) - \left(-\frac{1}{2(1)^2}\ln 1 - \frac{1}{4(1)^2}\right)$ Applies limits of 2 and 1 to their part (a) answer and subtracts the correct way round.	M1			
	$=\frac{3}{16}-\frac{1}{8}\ln 2 \text{or} \frac{3}{16}-\ln 2^{\frac{1}{8}} \text{ or } \frac{1}{16}(3-2\ln 2), \text{ etc., or awrt } 0.1 \qquad \text{or equivalent.}$	Al			
		[2] 7			
(a)	M1: Integration by parts is applied in the form $\frac{\pm \lambda}{x^2} \ln x \pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x}$ or equivalent.				
	<u>A1</u> : $\frac{-1}{2x^2} \ln x$ simplified or un-simplified.				
	$\underline{\underline{A1}}: \underline{-\int \frac{-1}{2x^2} \cdot \frac{1}{x}} \text{ or equivalent. You can ignore the } dx.$				
	dM1: Depends on the previous M1. $\pm \int \mu \frac{1}{x^2} \cdot \frac{1}{x} \rightarrow \pm \beta x^{-2}$.				
	A1: $-\frac{1}{2x^2}\ln x + \frac{1}{2}\left(-\frac{1}{2x^2}\right)\left\{+c\right\}$ or $= -\frac{1}{2x^2}\ln x - \frac{1}{4x^2}\left\{+c\right\}$ or $\frac{x^{-2}}{-2}\ln x - \frac{x^{-2}}{4}\left\{+c\right\}$				
	or $\frac{-1-2\ln x}{4x^2}$ {+ c} or equivalent.				
(b)	4x You can ignore subsequent working after a correct stated answer. M1: Some evidence of applying limits of 2 and 1 to their part (a) answer and subtracts the correct way round.				
	A1: <i>Two term exact answer</i> of either $\frac{3}{16} - \frac{1}{8} \ln 2$ or $\frac{3}{16} - \ln 2^{\frac{1}{8}}$ or $\frac{1}{16} (3 - 2\ln 2)$ or $\frac{\ln(\frac{1}{4}) + 3}{16}$				
	or $0.1875 - 0.125 \ln 2$. Also allow awrt 0.1. Also note the fraction terms must be combined.				
	Note: Award the final A0 in part (b) for a candidate who achieves awrt 0.1 in part (b), when their answer to part (a) is incorrect.				

Question Number	Scheme	Marks			
(a)	$\int x^2 e^x dx, 1^{\text{st}} \text{ Application:} \begin{cases} u = x^2 \implies \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}, 2^{\text{nd}} \text{ Application:} \begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$				
	$= x^2 e^x - \int \lambda x e^x \{dx\}, \ \lambda > 0$ $= x^2 e^x - \int \lambda x e^x \{dx\}, \ \lambda > 0$				
	$x^{2}e^{x} - \int 2xe^{x} \{dx\}$ $= x^{2}e^{x} - 2\left(xe^{x} - \int e^{x}dx\right)$ Either $\pm Ax^{2}e^{x} \pm Bxe^{x} \pm C \int e^{x} \{dx\}$				
	or for $\pm K \int xe^x \{dx\} \to \pm K \left(xe^x - \int e^x \{dx\}\right)$	M1			
	$= x^{2}e^{x} - 2(xe^{x} - e^{x}) \{+c\}$ $\pm Ax^{2}e^{x} \pm Bxe^{x} \pm Ce^{x}$ Correct answer, with/without + c	M1 A1			
(b)	$ \left\{ \begin{bmatrix} x^2 e^x - 2(xe^x - e^x) \end{bmatrix}_0^1 \right\} $ $= \left(1^2 e^1 - 2(1e^1 - e^1)\right) - \left(0^2 e^0 - 2(0e^0 - e^0)\right) $ Applies limits of 1 and 0 to an expression of the form $\pm Ax^2 e^x \pm Bxe^x \pm Ce^x$, $A \neq 0$, $B \neq 0$ and $C \neq 0$ and subtracts the correct way round.	[5 M1			
	$= (1 e^{-2}(1 e^{-2})) - (0 e^{-2}(0 e^{-2}))$ $= e^{-2}$ $e^{-2} cso$	A1 oe			
	Notes for Question				
(a)	M1: Integration by parts is applied in the form $x^2e^x - \int \lambda x e^x \{dx\}$, where $\lambda > 0$. (must be in this form). A1: $x^2e^x - \int 2xe^x \{dx\}$ or equivalent.				
	M1: Either achieving a result in the form $\pm Ax^2 e^x \pm Bx e^x \pm C \int e^x \{dx\}$ (can be implied)				
	(where $A \neq 0$, $B \neq 0$ and $C \neq 0$) or for $\pm K \int xe^x \{dx\} \rightarrow \pm K \left(xe^x - \int e^x \{dx\}\right)$				
	M1: $\pm Ax^2 e^x \pm Bx e^x \pm C e^x$ (where $A \neq 0$, $B \neq 0$ and $C \neq 0$) A1: $x^2 e^x - 2(xe^x - e^x)$ or $x^2 e^x - 2xe^x + 2e^x$ or $(x^2 - 2x + 2)e^x$ or equivalent with/without $+ c$.				
(b)					
	(where $A \neq 0$, $B \neq 0$ and $C \neq 0$) and subtracting the correct way round.	, ,			
	Evidence of a proper consideration of the limit of 0 (as detailed above) is needed for M1. So, just subtracting zero is M0.				
	A1: $e - 2$ or $e^1 - 2$ or $-2 + e$. Do not allow $e - 2e^0$ unless simplified to give $e - 2$.				
	Note: that 0.718 without seeing e – 2 or equivalent is A0.				
	WARNING: Please note that this A1 mark is for correct solution only.				
	So incorrect $[\dots,]_0^1$ leading to $e - 2$ is A0.				
	Note: If their part (a) is correct candidates can get M1A1 in part (b) for e - 2 from no working.				
	Note: 0.718 from no working is M0A0				

Question Number	Scheme		Marks
		$\pm \alpha x e^{4x} - \int \beta e^{4x} \{ dx \}, \alpha \neq 0, \ \beta > 0$	M1
(i)	$\int x e^{4x} dx = \frac{1}{4} x e^{4x} - \int \frac{1}{4} e^{4x} \{ dx \}$	$\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$	A1
	$=\frac{1}{4}xe^{4x}-\frac{1}{16}e^{4x}\{+c\}$	$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$	A1