Newton Raphson Method - Edexcel Past Exam Questions

1.

Figure 1

Figure 1 shows part of the graph of $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=x \sin x+2 x-3 .
$$

The equation $\mathrm{f}(x)=0$ has a single root α.
(a) Taking $x_{1}=1$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, to 3 significant figures.
(b) Given instead that $x_{1}=5$ is taken as a first approximation to α in the Newton-Raphson procedure,
(i) use Figure 1 to produce a rough sketch of $y=\mathrm{f}(x)$ for $3 \leq x \leq 6$,
and by drawing suitable tangents, and without further calculation,
(ii) show the approximate positions of x_{2} and x_{3}, the second and third approximations to α.
2.

$$
f(x)=1-e^{x}+3 \sin 2 x
$$

The equation $\mathrm{f}(x)=0$ has a root α in the interval $1.0<x<1.4$.
(b) Taking your answer to part (a) as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α.
(c) By considering the change of sign of $\mathrm{f}(x)$ over an appropriate interval, show that your answer to part (b) is accurate to 2 decimal places.

June 2005 Q4
3.

$$
\mathrm{f}(x)=0.25 x-2+4 \sin \sqrt{ } x
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between $x=0.24$ and $x=0.28$.

The equation $\mathrm{f}(x)=0$ also has a root β between $x=10.75$ and $x=11.25$.
(c) Taking 11 as a first approximation to β, use the Newton-Raphson process on $\mathrm{f}(x)$ once to obtain a second approximation to β. Give your answer to 2 decimal places.

June 2006 Q6
4.

$$
\mathrm{f}(x)=\ln x+x-3, x>0 .
$$

(a) Find $\mathrm{f}(2.0)$ and $\mathrm{f}(2.5)$, each to 4 decimal places, and show that the root α of the equation $\mathrm{f}(x)=0$ satisfies $2.0<\alpha<2.5$.
(b) Taking 2.25 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α, giving your answer to 3 decimal places.
(c) Show your answer in part (c) gives α correct to 3 decimal places.
5.

$$
f(x)=x^{3}+8 x-19
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has only one real root.
(b) Show that the real root of $\mathrm{f}(x)=0$ lies between 1 and 2 .
(c) Obtain an approximation to the real root of $\mathrm{f}(x)=0$ by performing two applications of the Newton-Raphson procedure to $\mathrm{f}(x)$, using $x=2$ as the first approximation. Give your answer to 3 decimal places.
(d) By considering the change of sign of $\mathrm{f}(x)$ over an appropriate interval, show that your answer to part (c) is accurate to 3 decimal places.
6. $\mathrm{f}(x)=3 x^{2}+x-\tan \left(\frac{x}{2}\right)-2, \quad-\pi<x<\pi$.

The equation $\mathrm{f}(x)=0$ has a root α in the interval [0.7, 0.8].
(b) Taking 0.75 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.
7.

$$
\mathrm{f}(x)=4 \cos x+\mathrm{e}^{-x} .
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α between 1.6 and 1.7
(b) Taking 1.6 as your first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 significant figures.
8.

$$
\mathrm{f}(x)=3 \sqrt{ } x+\frac{18}{\sqrt{ } x}-20
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval [1.1, 1.2].
(b) Find $\mathrm{f}^{\prime}(x)$.
(c) Using $x_{0}=1.1$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 significant figures.
9.

Figure 1
Figure 1 shows part of the curve with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=1-x-\sin \left(x^{2}\right) .
$$

The point A, with x-coordinate p, is a stationary point on the curve.
The equation $\mathrm{f}(x)=0$ has a root α in the interval $0.6<\alpha<0.7$.
(a) Explain why $x_{0}=p$ is not suitable to use as a first approximation to α when applying the Newton-Raphson procedure to $\mathrm{f}(x)$.
(b) Using $x_{0}=0.6$ as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to find a second approximation to α, giving your answer to 3 decimal places.
(c) By considering the change of sign of $\mathrm{f}(x)$ over an appropriate interval, show that your answer to part (b) is accurate to 3 decimal places.
10. Given that α is the only real root of the equation

$$
x^{3}-x^{2}-6=0,
$$

(a) show that $2.2<\alpha<2.3$
(b) Taking 2.2 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)=x^{3}-x^{2}-6$ to obtain a second approximation to α, giving your answer to 3 decimal places.
11. Given that α is the only real root of the equation

$$
\sin 2 x-\ln 3 x=0
$$

(a) show that $0.8<\alpha<0.9$
(b) Taking 0.9 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)=\sin 2 x-\ln 3 x$ to obtain a second approximation to α, giving your answer to 3 decimal places.
12.

$$
\mathrm{f}(x)=x \cos x-2 x+5
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α in the interval $[2,2.1]$.
(b) Taking 2 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α, giving your answer to 2 decimal places.
(c) Show that your answer to part (b) gives α correct to 2 decimal places.
13.

$$
\begin{equation*}
\mathrm{f}(x)=3 x^{2}-\frac{11}{x^{2}} \tag{1}
\end{equation*}
$$

(a) Write down, to 3 decimal places, the value of $f(1.3)$ and the value of $f(1.4)$.

The equation $\mathrm{f}(x)=0$ has a root α between 1.3 and 1.4
(c) Taking 1.4 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)$ to obtain a second approximation to α, giving your answer to 3 decimal places.
14.

$$
\mathrm{f}(x)=x^{3}-\frac{7}{x}+2, x>0
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between 1.4 and 1.5.
(c) Taking 1.45 as a first approximation to α, apply the Newton-Raphson procedure once to $\mathrm{f}(x)=x^{3}-\frac{7}{x}+2, x>0$ to obtain a second approximation to α, giving your answer to 3 decimal places.
15.

$$
\mathrm{f}(x)=5 x^{2}-4 x^{\frac{3}{2}}-6, \quad x \geq 0 .
$$

The root α of the equation $\mathrm{f}(x)=0$ lies in the interval $[1.6,1.8]$.
(b) Differentiate $\mathrm{f}(x)$ to find $\mathrm{f}^{\prime}(x)$.
(c) Taking 1.7 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.
16.

$$
\mathrm{f}(x)=x^{2}+\frac{5}{2 x}-3 x-1, \quad x \neq 0
$$

(a) Use differentiation to find $\mathrm{f}^{\prime}(x)$.

The root α of the equation $\mathrm{f}(x)=0$ lies in the interval $[0.7,0.9]$.
(b) Taking 0.8 as a first approximation to α, apply the Newton-Raphson process once to $\mathrm{f}(x)$ to obtain a second approximation to α. Give your answer to 3 decimal places.

