Newton Rhapson Method - Edexcel Past Exam Questions MARK SCHEME

Question 1
(a) Correct method for $\mathrm{f}^{\prime}(x) ; \quad x \cos x+\sin x+2$ M1A1
$f(1)=-0.1585, \quad f^{\prime}(1)=3.382$ or better seen
A1
Using N-R correctly: $\mathrm{u}_{1}=1-\frac{\text { "- }-0.1585^{\prime \prime}}{{ }^{\prime \prime} 3.3822^{\prime \prime}} ;=1.05$ (3 s.f) M1A1 (5)
[Notes: Answer 1.047, 1.05 implies second A mark\}
(b) Two tangents drawn, one at $\{5, \mathrm{f}(5)\}$, the other at $\left\{x_{2}, \mathrm{f}\left(x_{2}\right)\right\}$ M1
x_{2}, x_{3} marked in appropriate positions
Al (2) [7]

Question 2

NB.

$$
\begin{aligned}
& \quad f(1)=1.0 \ldots, f(1.1)=0.42 \ldots, f(\\
& f(1.15)=0.078 \ldots, f(1.4)=-2 . \\
& f(1.2)=-0.2937 \ldots \\
& f(1.1)=0.42 \ldots \text { and } f(1.15)=0.078 \ldots
\end{aligned}
$$

$$
\therefore \quad \alpha=1.2
$$

(G)

$$
\begin{aligned}
f^{\prime}(x) & =6 \cos 2 x-e^{x} \\
x_{2} & =1.2-\frac{-0.2937 \ldots}{f^{\prime}(1.2)} \\
& =1.16(2 \ldots)
\end{aligned}
$$

A.w.R.t. 1-16
(C)

$$
\left.\begin{array}{rl}
f(1.155) & =0.04 \ldots . . \\
f(1.165) & =-0.029 \cdots, \tag{2}
\end{array}\right\}(\text { change of sign }) \therefore \alpha=1.16
$$

Question 3

Question 4

Question 5

Question 6

(a)	$\mathrm{f}(0.7)=-0.195028497$ and $\mathrm{f}(0.8)=0.297206781$	B1, B1
	Use $\frac{0.8-\alpha}{\alpha-0.7}=\frac{f(0.8)}{-f(0.7)}$ to obtain $\alpha=\frac{-0.8 f(0.7)+0.7 f(0.8)}{f(0.8)-f(0.7)}$	M1
	$(=0.739620991)=0.740 \quad$ Answer required to 3 dp or better	A1
(b)	$f^{\prime}(x)=6 x+1-\frac{1}{2} \sec ^{2}\left(\frac{x}{2}\right)$	M1 A1
	Use $x_{2}=0.75-\frac{f(0.75)}{f^{\prime}(0.75)}(=0.741087218)=0.741$ Answer required to 3 dp or better	M1 A1 (4)
		[8]

Question 7

(a) (b)	$\begin{aligned} & \mathrm{f}(1.6)=\ldots \quad \mathrm{f}(1.7)=\ldots \\ & 0.08 \ldots \text { (or } 0.09), \quad-0.3 \ldots \\ & \mathrm{f}^{\prime}(x)=-4 \sin x-\mathrm{e}^{-x} \\ & 1.6-\frac{\mathrm{f}(1.6)}{\mathrm{f}^{\prime}(1.6)} \\ & =1.6-\frac{4 \cos 1.6+\mathrm{e}^{-1.6}}{\left(-4 \sin 1.6-\mathrm{e}^{-1.6}\right)} \end{aligned}\left(=1.6-\frac{0.085 \ldots}{-4.2 \ldots}\right) \quad . \quad .$	M1 A1 (2) B1 M1 A1 A1 (4) (6 marks)

Question 8

Question Number	Scheme	Marks
(a)	attempt evaluation of $\mathrm{f}(1.1)$ and $\mathrm{f}(1.2)$ (- looking for sign change)	M1
	$\mathrm{f}(1.1)=0.30875, \mathrm{f}(1.2)=-0.28199$ Change of sign in $\mathrm{f}(x) \Rightarrow$ root in the interval	A1
		(2)
	$\mathrm{f}^{\prime}(x)=\frac{3}{2} x^{-\frac{1}{2}}-9 x^{-1 \frac{1}{2}}$	M1 A1 A1
(b)	$\mathrm{f}(x)=\frac{3}{2} x-9 x$	(3)
(c)	$f(1.1)=0.30875 . . \quad f^{\prime}(1.1)=-6.37086 \ldots$	B1 B1
	$x_{1}=1.1-\frac{0.30875 \ldots}{-6.37086 . .}$	M1
	$=1.15$ (to 3 sig.figs.)	A1
		(4) [9]

Question 9

Question 10

Question Number	Scheme	Marks
(a) (b)	$\begin{array}{ll} \mathrm{f}(2.2)=2.2^{3}-2.2^{2}-6 & (=-0.192) \\ \mathrm{f}(2.3)=2.3^{3}-2.3^{2}-6 & (=0.877) \\ \text { Change of sign } \Rightarrow \text { Root } \quad \text { need numerical values correct (to } 1 \text { s.f.). } \\ \mathrm{f}^{\prime}(x)=3 x^{2}-2 x & \\ \mathrm{f}^{\prime}(2.2)=10.12 \\ x_{1}=x_{0}-\frac{\mathrm{f}\left(x_{0}\right)}{\mathrm{f}^{\prime}\left(x_{0}\right)}=2.2-\frac{-0.192}{10.12} \\ =2.219 \end{array}$	M1 A1 (2) B1 B1 M1 A1ft A1cao

Question 11

Question 12

Question 13

Question 14

Question Number	Scheme	Marks
	(a) $\mathrm{f}(1.4)=\ldots$ and $\mathrm{f}(1.5)=\ldots \quad$ Evaluate both $\mathrm{f}(1.4)=-0.256 \quad$ (or $-\frac{32}{125}$), $\mathrm{f}(1.5)=0.708 \ldots \quad$ (or $\frac{17}{24}$) Change of sign, \therefore root Alternative method: Graphical method could earn M1 if 1.4 and 1.5 are both indicated A1 then needs correct graph and conclusion, i.e. change of sign \therefore root	$\begin{align*} & \text { M1 } \tag{2}\\ & \text { A1 } \end{align*}$
	$\begin{aligned} & \text { (b) } \mathrm{f}(1.45)=0.221 \ldots \quad \text { or } 0.2 \quad[\therefore \text { root is in }[1.4,1.45]] \\ & \mathrm{f}(1.425)=-0.018 \ldots \text { or }-0.019 \text { or }-0.02 \\ & \therefore \text { root is in }[1.425,1.45] \end{aligned}$	M1 M1 A1cso (3)
	$\begin{aligned} & \text { (c) } \mathrm{f}^{\prime}(x)=3 x^{2}+7 x^{-2} \\ & \mathrm{f}^{\prime}(1.45)=9.636 \ldots \quad\left(\text { Special case: } \mathrm{f}^{\prime}(x)=3 x^{2}+7 x^{-2}+2 \text { then } \mathrm{f}^{\prime}(1.45)=11.636 \ldots\right) \\ & x_{1}=1.45-\frac{\mathrm{f}(1.45)}{\mathrm{f}^{\prime}(1.45)}=1.45-\frac{0.221 \ldots}{9.636 \ldots}=1.427 \end{aligned}$	M1 A1 A1ft M1 A1cao (5) 10 marks

Question 15

Question Number	Scheme	Marks
	(a) $f(1.4)=\ldots$ and $f(1.5)=\ldots \quad$ Evaluate both $\mathrm{f}(1.4)=-0.256 \quad$ (or $-\frac{32}{125}$), $\mathrm{f}(1.5)=0.708 \ldots \quad$ (or $\frac{17}{24}$) Change of sign, \therefore root Alternative method: Graphical method could earn M1 if 1.4 and 1.5 are both indicated A1 then needs correct graph and conclusion, i.e. change of sign \therefore root	$\begin{align*} & \text { M1 } \\ & \text { A1 } \tag{2} \end{align*}$
	$\begin{aligned} & \text { (b) } \mathrm{f}(1.45)=0.221 \ldots \quad \text { or } 0.2 \quad[\therefore \text { root is in }[1.4,1.45]] \\ & \mathrm{f}(1.425)=-0.018 \ldots \text { or }-0.019 \text { or }-0.02 \\ & \therefore \text { root is in }[1.425,1.45] \end{aligned}$	M1 M1 Alcso
	$\begin{aligned} & \text { (c) } \mathrm{f}^{\prime}(x)=3 x^{2}+7 x^{-2} \\ & \mathrm{f}^{\prime}(1.45)=9.636 \ldots \quad\left(\text { Special case: } \mathrm{f}^{\prime}(x)=3 x^{2}+7 x^{-2}+2 \text { then } \mathrm{f}^{\prime}(1.45)=11.636 \ldots\right) \\ & x_{1}=1.45-\frac{\mathrm{f}(1.45)}{\mathrm{f}^{\prime}(1.45)}=1.45-\frac{0.221 \ldots}{9.636 \ldots}=1.427 \end{aligned}$	M1 A1 Alft M1 A1cao (5) 10 marks

Question 16

Question Number	Scheme	Notes	Marks
(a)	$\mathrm{f}(\mathrm{x})=x^{2}+\frac{5}{2 x}-3 x-1, x \neq 0$		M1
	$\mathrm{f}(x)=x^{2}+\frac{5}{2} x^{-1}-3 x-1$		
	$\mathrm{f}^{\prime}(x)=2 x-\frac{5}{2} x^{-2}-3\{+0\}$	At least two of the four terms differentiated correctly.	
		Correct differentiation. (Allow any correct unsimplified form)	
	$\left\{\mathrm{f}^{\prime}(x)=2 x-\frac{5}{2 x^{2}}-3\right\}$		(2)
(b)	$\mathrm{f}(0.8)=0.8^{2}+\frac{5}{2(0.8)}-3(0.8)-1(=0.365)\left(=\frac{73}{200}\right)$	A correct numerical expression for $\mathrm{f}(0.8)$	B1
	$\mathrm{f}^{\prime}(0.8)=-5.30625\left(=\frac{-849}{160}\right)$	Attempt to insert $x=0.8$ into their $\mathrm{f}^{\prime}(x)$. Does not require an evaluation. (If $f^{\prime}(0.8)$ is incorrect for their derivative and there is no working score M0)	M1
	$\alpha_{2}=0.8-\left(\frac{" 0.365 "}{"-5.30625 "}\right)$	Correct application of Newton-Raphson using their values. Does not require an evaluation.	M1
	= 0868786808...		
	$=0.869$ (3dp)	0.869	A1 cao
	A correct answer only with no working scores no marks. N-R must be seen. Ignore any further applications of N-R		(4)
	A derivative of $2 x-5(2 x)^{-2}-3$ is quite common and leads to $\mathrm{f}^{\prime}(0.8)=-3.353125$ and a final answer of 0.909 . This would normally score M1A0B1M1M1A0 (4/6) Similarly for a derivative of $2 x-10 x^{-2}-3$ where the corresponding values are $f^{\prime}(0.8)=-17.025 \text { and answer } 0.821$		
			6

