

Parametric Differentiation 2 - Edexcel Past Exam Questions MARK SCHEME

Question Number	Scheme	Marks
	$x = 4\sin\left(t + \frac{\pi}{6}\right), y = 3\cos 2t, 0_{,,,} t < 2\pi$	
(a)	$\frac{dx}{dt} = 4\cos\left(t + \frac{\pi}{6}\right), \frac{dy}{dt} = -6\sin 2t$	B1 B1
	So, $\frac{dy}{dx} = \frac{-6\sin 2t}{4\cos\left(t + \frac{\pi}{6}\right)}$	B1√ oe
(b)	$\left\{\frac{dy}{dx} = 0 \implies\right\} - 6\sin 2t = 0$	M1 oe
	$ w \ t = 0, x = 4\sin\left(\frac{\pi}{6}\right) = 2, y = 3\cos 0 = 3 \to (2,3) $	M1
	$ext{@} t = \frac{\pi}{2}, \ x = 4\sin\left(\frac{2\pi}{3}\right) = \frac{4\sqrt{3}}{2}, \ y = 3\cos\pi = -3 \ \to \ (2\sqrt{3}, -3)$	
	(a) $t = \pi$, $x = 4\sin\left(\frac{7\pi}{6}\right) = -2$, $y = 3\cos 2\pi = 3 \rightarrow (-2, 3)$	
		A1A1A1
		[
(a)	B1: Either one of $\frac{dx}{dt} = 4\cos\left(t + \frac{\pi}{6}\right)$ or $\frac{dy}{dt} = -6\sin 2t$. They do not have to be simplified.	
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ correct. They do not have to be simplified.	
	Any or both of the first two marks can be implied. Don't worry too much about their notation for the first two B1 marks.	
	B1: Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt} \times \frac{1}{\text{their}(\frac{dx}{dt})}$. Note: This is a follow through many	k.
	Alternative differentiation in part (a)	
	$x = 2\sqrt{3}\sin t + 2\cos t \implies \frac{\mathrm{d}x}{\mathrm{d}t} = 2\sqrt{3}\cos t - 2\sin t$	
	$y = 3(2\cos^2 t - 1) \implies \frac{dy}{dt} = 3(-4\cos t \sin t)$	
	or $y = 3\cos^2 t - 3\sin^2 t \implies \frac{dy}{dt} = -6\cos t \sin t - 6\sin t \cos t$	
	or $y = 3(1 - 2\sin^2 t) \Rightarrow \frac{dy}{dt} = 3(-4\cos t \sin t)$	

Question Number	Scheme		Mark	s
	(a) $\frac{dx}{dt} = 2\sqrt{3}\cos 2t$		B1	
	$\frac{\mathrm{d}y}{\mathrm{d}t} = -8\cos t \sin t$		M1 A1	
	$\frac{dy}{dx} = \frac{-8\cos t \sin t}{2\sqrt{3}\cos 2t}$ $= -\frac{4\sin 2t}{2\sqrt{3}\cos 2t}$		M1	
	$\frac{dy}{dx} = -\frac{2}{3}\sqrt{3}\tan 2t \qquad \left(k = -\frac{2}{3}\right)$		A1	(5)
	(b) When $t = \frac{\pi}{3}$ $x = \frac{3}{2}$, $y = 1$	can be implied	B1	
	$m = -\frac{2}{3}\sqrt{3}\tan\left(\frac{2\pi}{3}\right) (=2)$		M1	
	$y-1=2\left(x-\frac{3}{2}\right)$	L	M1	
	y = 2x - 2		A1	(4)
	(c) $x = \sqrt{3} \sin 2t = \sqrt{3} \times 2 \sin t \cos t$ $x^2 = 12 \sin^2 t \cos^2 t = 12 (1 - \cos^2 t) \cos^2 t$		M1	
	$x^2 = 12\left(1 - \frac{y}{4}\right)\frac{y}{4}$	or equivalent	M1 A1	(3)
	Alternative to (c)			[12]
	$y = 2\cos 2t + 2$ $\sin^2 2t + \cos^2 2t = 1$		M1	
	$\frac{x^2}{3} + \frac{(y-2)^2}{4} = 1$	L	M1 A1	(3)

Question Number	Scheme		Marks
	$x = 2\sin t$, $y = 1 - \cos 2t$ $\left\{= 2\sin^2 t\right\}$, $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$		
	dr dv dv At leas	at one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct.	B1
(a)	$\frac{dt}{dt} = 2\cos t$, $\frac{dy}{dt} = 2\sin 2t$ or $\frac{dy}{dt} = 4\sin t\cos t$	oth $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct.	B1
	So, $\frac{dy}{dx} = \frac{2\sin 2t}{2\cos t} \left\{ = \frac{4\cos t \sin t}{2\cos t} = 2\sin t \right\}$ Applies the	heir $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	
	$\pi = dv = 2\sin\left(\frac{2\pi}{6}\right)$ and subs	stitutes $t = \frac{\pi}{6}$ into their $\frac{dy}{dx}$.	M1;
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{2\sin\left(\frac{2\pi}{6}\right)}{2\cos\left(\frac{\pi}{6}\right)}$; = 1	Correct value for $\frac{dy}{dx}$ of 1	Al cao es
(b)	$y = 1 - \cos 2t = 1 - (1 - 2\sin^2 t)$ = $2\sin^2 t$		[4 M1
	So, $y = 2\left(\frac{x}{2}\right)^2$ or $y = \frac{x^2}{2}$ or $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$	$y = \frac{x^2}{2}$ or equivalent.	A1 cso isv
	Either $k = 2$ or $-2 \le x \le 2$		B1
(c)	Range: $0 \leqslant f(x) \leqslant 2$ or $0 \leqslant y \leqslant 2$ or $0 \leqslant f \leqslant 2$	See notes	B1 B1 [2
			12
(a)	Notes for Question		
	B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be in	mplied from their working.	
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be impli-	ed from their working.	
	M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute	$t = \frac{\pi}{6}$ into their expression f	or $\frac{dy}{dx}$.
	This mark may be implied by their final answer.		
	Ie. $\frac{dy}{dx} = \frac{\sin 2t}{2\cos t}$ followed by an answer of $\frac{1}{2}$ would be M1 (in	nplied).	
	A1: For an answer of 1 by correct solution only.		
	Note: Don't just look at the answer! A number of candidates are f	inding $\frac{dy}{dx} = 1$ from incorr	ect methods
	Note: Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dx}$	$= \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} .$	
	Special Case: Award SC: B0B0M1A1 for $\frac{dx}{dt} = -2\cos t$, $\frac{dy}{dt} = -2\cos t$	$-2\sin 2t \text{ leading to } \frac{dy}{dx} = \frac{-2}{-2}$	$\frac{\sin 2t}{\cos t}$
	which after substitution of $t = \frac{\pi}{6}$, yields $\frac{dy}{dx} = 1$		
	Note: It is possible for you to mark part(a), part (b) and part (c) togeth	er. Ignore labelling!	

Mater	for	Omestion	Continued
Notes	101	Ouestion	Conunuea

(b) M1: Uses the correct double angle formula $\cos 2t = 1 - 2\sin^2 t$ or $\cos 2t = 2\cos^2 t - 1$ or $\cos 2t = \cos^2 t - \sin^2 t$ in an attempt to get y in terms of $\sin^2 t$ or get y in terms of $\cos^2 t$ or get y in terms of $\sin^2 t$ and $\cos^2 t$. Writing down $y = 2\sin^2 t$ is fine for M1.

A1: Achieves $y = \frac{x^2}{2}$ or un-simplified equivalents in the form y = f(x). For example:

$$y = \frac{2x^2}{4}$$
 or $y = 2\left(\frac{x}{2}\right)^2$ or $y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$ or $y = 1 - \frac{4 - x^2}{4} + \frac{x^2}{4}$

and you can ignore subsequent working if a candidate states a correct version of the Cartesian equation. IMPORTANT: Please check working as this result can be fluked from an incorrect method. Award A0 if there is a +c added to their answer.

B1: Either k = 2 or a candidate writes down $-2 \le x \le 2$. Note: $-2 \le k \le 2$ unless k stated as 2 is B0.

(c) Note: The values of 0 and/or 2 need to be evaluated in this part

B1: Achieves an inclusive upper or lower limit, using acceptable notation. Eg: $f(x) \ge 0$ or $f(x) \le 2$

B1: $0 \le f(x) \le 2$ or $0 \le y \le 2$ or $0 \le f \le 2$

Special Case: SC: B1B0 for either 0 < f(x) < 2 or 0 < f < 2 or 0 < y < 2 or (0, 2)

Special Case: SC: B1B0 for $0 \le x \le 2$.

IMPORTANT: Note that: Therefore candidates can use either y or f in place of f(x)

 Examples:
 $0 \le x \le 2$ is SC: B1B0
 0 < x < 2 is B0B0

 $x \ge 0$ is B0B0
 $x \le 2$ is B0B0

 f(x) > 0 is B0B0
 f(x) < 2 is B0B0

 x > 0 is B0B0
 x < 2 is B0B0

 $0 \ge f(x) \ge 2$ is B0B0 $0 < f(x) \le 2$ is B1B0 $0 < f(x) \le 0$ is B1B0 $0 < f(x) \le 0$ is B1B0

 $f(x) \le 2$ is B1B0 $f(x) \ge 0$ and $f(x) \le 2$ is B1B1. Must state AND $\{or\}$

So B1, B1.

 $2 \leqslant f(x) \leqslant 2 \text{ is B0B0}$ $f(x) \geqslant 0 \text{ or } f(x) \leqslant 2 \text{ is B1B0}.$

 $|f(x)| \le 2$ is B1B0
 $|f(x)| \ge 2$ is B0B0

 $1 \le f(x) \le 2$ is B1B0
 1 < f(x) < 2 is B0B0

 $0 \le f(x) \le 4$ is B1B0
 0 < f(x) < 4 is B0B0

0 ≤ Range ≤ 2 is B1B0 Range is in between 0 and 2 is B1B0

 $0 < Range < 2 \quad is \ B0B0. \qquad \qquad Range \geqslant 0 \ \ is \ B1B0$

Range ≤ 2 is B1B0 Range ≥ 0 and Range ≤ 2 is B1B0.

[0, 2] is B1B1 (0, 2) is SC B1B0

At $t = \frac{\pi}{6}$, $\frac{dx}{dt} = 2\cos\left(\frac{\pi}{6}\right) = \sqrt{3}$, $\frac{dy}{dt} = 2\sin\left(\frac{2\pi}{6}\right) = \sqrt{3}$

Hence $\frac{dy}{dx} = 1$ So implied M1, A1.

	Notes for Question Continued			
Aliter	1 , dy	Correct differentiation of th	eir Cartesian equation.	B1ft
(a) Way 3	$y = \frac{1}{2}x^2 \Rightarrow \frac{dy}{dx} = x$ Find	is $\frac{dy}{dx} = x$, using the correct C	artesian equation only.	B1
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = 2\sin\left(\frac{\pi}{6}\right)$		ue of "x" when $t = \frac{\pi}{6}$	
	At $t = \frac{1}{6}$, $\frac{1}{dx} = 2\sin\left(\frac{1}{6}\right)$	and substi	tutes this into their $\frac{dy}{dx}$	M1
	= 1	Co	orrect value for $\frac{dy}{dx}$ of 1	A1
Aliter (b)	$y = 1 - \cos 2t = 1 - (2\cos^2 t - 1)$		M1	
Way 2	$y = 2 - 2\cos^2 t \Rightarrow \cos^2 t = \frac{2 - y}{2} \Rightarrow 1 - \sin^2 t$	$t^2 t = \frac{2 - y}{2}$		
	$1 - \left(\frac{x}{2}\right)^2 = \frac{2 - y}{2}$		(Must be in the form	y = f(x)).
	$y = 2 - 2\left(1 - \left(\frac{x}{2}\right)^2\right)$		A1	
Aliter (b)	$x = 2\sin t \implies t = \sin^{-1}\left(\frac{x}{2}\right)$			
Way 3	(()		o make t the subject tes the result into y.	M1
	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$		(x, y(x))	A1 oe
Aliter (b)	$y = 1 - \cos 2t \implies \cos 2t = 1 - y \implies t = \frac{1}{2}c$	cos ⁻¹ (1 – y)		
Way 4	So, $x = \pm 2\sin\left(\frac{1}{2}\cos^{-1}(1-y)\right)$		o make t the subject tes the result into y.	M1
	So, $y = 1 - \cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	<i>y</i> = 1	$-\cos\left(2\sin^{-1}\left(\frac{x}{2}\right)\right)$	A1 oe
Aliter (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin t = x \implies y = \frac{1}{2}x^2 + c$	$\frac{dy}{dx} =$	$x \Rightarrow y = \frac{1}{2}x^2 + c$	M1
Way 5	Eg: when eg: $t = 0$ (nb: $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$),	Full method	of finding $y = \frac{1}{2}x^2$	A1
	$x = 0, y = 1 - 1 = 0 \Rightarrow c = 0 \Rightarrow y = \frac{1}{2}x^2$		ue of t : $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$	
	Note: $\frac{dy}{dx} = 2\sin t = x \implies y = \frac{1}{2}x^2$, with no a	ttempt to find c is M1A0.		

Question Number	Scheme		Marks
	$x = 27 \sec^3 t$, $y = 3 \tan t$, $0 \le t \le \frac{\pi}{3}$		
(2)	$\frac{dx}{dt} = 81 \sec^2 t \sec t \tan t$, $\frac{dy}{dt} = 3 \sec^2 t$	At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct.	B1
(a)	$\frac{1}{dt} = 81 \sec^2 t \sec^2 t \tan t$, $\frac{1}{dt} = 3 \sec^2 t$	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct.	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3\sec^2 t}{81\sec^3 t \tan t} \left\{ = \frac{1}{27\sec t \tan t} = \frac{\cos t}{27\tan t} = \frac{\cos^2 t}{27\sin t} \right\}$	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	M1;
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{3\sec^2(\frac{\pi}{6})}{81\sec^3(\frac{\pi}{6})\tan(\frac{\pi}{6})} = \frac{4}{72} \left\{ = \frac{3}{54} = \frac{1}{18} \right\}$	4 72	Al cao cso
	2 2		[4]
(b)	$\left\{1 + \tan^2 t = \sec^2 t\right\} \Rightarrow 1 + \left(\frac{y}{3}\right)^2 = \left(\sqrt[3]{\left(\frac{x}{27}\right)}\right)^2 = \left(\frac{x}{27}\right)^{\frac{2}{3}}$		M1
	$\Rightarrow 1 + \frac{y^2}{9} = \frac{x^{\frac{2}{3}}}{9} \Rightarrow 9 + y^2 = x^{\frac{1}{3}} \Rightarrow y = (x^{\frac{2}{3}} - 9)^{\frac{1}{2}} *$		A1 * cso
	$a = 27$ and $b = 216$ or $27 \le x \le 216$	a = 27 and $b = 216$	В1
			[3]

Question Number	Scheme	Marks
	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$	
	Main Scheme	
(a)	$x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	So, $\{x + y\} = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ Adds their expanded x (which is in terms of t) to $2\sin t$	dM1
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$	
	$=2\sqrt{3}\cos t$ * Correct proof	A1 *
(a)	Alternative Method 1	
	$x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) = 2\sqrt{3}\cos t - 2\sin t$	
	So, $x = 2\sqrt{3}\cos t - y$ Forms an equation in x, y and t.	dM1
	$x + y = 2\sqrt{3}\cos t$ * Correct proof	A1 *
	•	[3]
	Main Scheme	
	$(x+y)^2$ $(y)^2$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an	
(b)	$\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's.	M1
	$\Rightarrow \frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$	
	$\Rightarrow (x+y)^2 + 3y^2 = 12 $ $(x+y)^2 + 3y^2 = 12$	A1
	$\{a=3, b=12\}$	[2]
(b)	Alternative Method 1	
(0)	$\frac{\sin(x+y)^2 = 12\cos^2 t}{(x+y)^2 = 12\cos^2 t} = 12(1-\sin^2 t) = 12 - 12\sin^2 t$	
	Applies $\cos^2 t + \sin^2 t - 1$ to achieve an	
	So, $(x + y)^2 = 12 - 3y^2$ Applies cos $t + \sin t = 1$ to achieve an equation containing only x's and y's.	M1
	$\Rightarrow (x+y)^2 + 3y^2 = 12$ $(x+y)^2 + 3y^2 = 12$	A1
		[2]
(b)	Alternative Method 2	
	$(x+y)^2 = 12\cos^2 t$	
	As $12\cos^2 t + 12\sin^2 t = 12$	
	then $(x+y)^2 + 3y^2 = 12$	M1, A1
		[2] 5
		5

		Question Notes
(a)	M1	$\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right) \text{or} \cos\left(t + \frac{\pi}{6}\right) \to \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$
	Note	If a candidate states $\cos(A + B) = \cos A \cos B \pm \sin A \sin B$, but there is an error in its application
		then give M1.
		Awarding the dM1 mark which is dependent on the first method mark
Main	dM1	Adds their expanded x (which is in terms of t) to $2 \sin t$
	Note	Writing $x + y =$ is not needed in the Main Scheme method.
Alt 1	dM1	Forms an equation in x , y and t .
	A1*	Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors.
	Note	${x + y} = 4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t$, by itself is M0M0A0.
(b)	M1	Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's.
	A1	leading $(x + y)^2 + 3y^2 = 12$
	SC	Award Special Case B1B0 for a candidate who writes down either
		• $(x+y)^2 + 3y^2 = 12$ from no working
		 a = 3, b = 12, but does not provide a correct proof.
	Note	Alternative method 2 is fine for M1 A1
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b \implies a = 3, b = 12$ is SC: B1B0
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b$
		 states a = 3, b = 12
		• and refers to either $\cos^2 t + \sin^2 t = 1$ or $12\cos^2 t + 12\sin^2 t = 12$
		and there is no incorrect working
		would get M1A1

Question Number	Scheme		Marks
	$x = 3\tan\theta$, $y = 4\cos^2\theta$ or $y = 2 + 2\cos 2\theta$, $0 \le \theta < 1$	$\frac{\pi}{2}$.	
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$, $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -8\cos\theta\sin\theta$ or $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -4\sin2\theta$		
	$\frac{dy}{dx} = \frac{-8\cos\theta\sin\theta}{3\sec^2\theta} \left\{ = -\frac{8}{3}\cos^3\theta\sin\theta = -\frac{4}{3}\sin2\theta\cos^2\theta \right\}$	their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$	M1
	$\frac{1}{3} \operatorname{sec}^{2} \theta \qquad \left[\begin{array}{cc} 3 & \cos \theta & \sin \theta & \sin \theta \\ 3 & \cos \theta & \sin \theta & \sin \theta \\ \end{array} \right]$	Correct $\frac{dy}{dx}$	A1 oe
	At $P(3, 2)$, $\theta = \frac{\pi}{4}$, $\frac{dy}{dx} = -\frac{8}{3}\cos^3\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right) \left\{ = -\frac{2}{3} \right\}$	Some evidence of substituting $\theta = \frac{\pi}{4}$ into their $\frac{dy}{dx}$	M1
	So, $m(\mathbf{N}) = \frac{3}{2}$	applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
	Either N: $y-2=\frac{3}{2}(x-3)$		
	or $2 = \left(\frac{3}{2}\right)(3) + c$	see notes	M1
	{At Q , $y = 0$, so, $-2 = \frac{3}{2}(x - 3)$ } giving $x = \frac{5}{3}$	$x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67	Al cso
			[6]

Question Number	Scheme	Marks
	$x = t - 4\sin t$, $y = 1 - 2\cos t$, $-\frac{2\pi}{3} \leqslant t \leqslant \frac{2\pi}{3}$ $A(k, 1)$ lies on the curve, $k > 0$	
(a)	{When $y = 1$,} $1 = 1 - 2\cos t \Rightarrow t = -\frac{\pi}{2}$, $\frac{\pi}{2}$ Sets $y = 1$ to find k (or x) $= \frac{\pi}{2} - 4\sin\left(\frac{\pi}{2}\right)$ or $x = -\frac{\pi}{2} - 4\sin\left(-\frac{\pi}{2}\right)$ and uses their t to find	I MII
	$\left\{ \text{When } t = -\frac{\pi}{2}, k > 0, \right\} \text{ so } k = 4 - \frac{\pi}{2} \text{ or } \frac{8 - \pi}{2}$ $x \text{ or } k = 4 - \frac{\pi}{2}$	A1 [2]
(b)	$\frac{dx}{dt} = 1 - 4\cos t, \frac{dy}{dt} = 2\sin t$ At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct	et. B1
(0)	$\frac{dt}{dt}$ Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct	et. B1
	So, $\frac{dy}{dx} = \frac{2\sin t}{1 - 4\cos t}$ Applies their $\frac{dy}{dt}$ divided by their $\frac{dz}{dt}$. I M1-
	$2\sin\left(-\frac{\pi}{a}\right)$ and substitutes their t into their $\frac{dy}{dt}$	2.
	At $t = -\frac{\pi}{2}$, $\frac{dy}{dx} = \frac{2\sin\left(-\frac{\pi}{2}\right)}{1 - 4\cos\left(-\frac{\pi}{2}\right)}$; $= -2$ Correct value for $\frac{dy}{dx}$ of $-$	cao cso
(c)	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$ Sets their $\frac{dy}{dx} = -\frac{1}{2}$	$\frac{1}{2}$ M1
	gives $4\sin t - 4\cos t = -1$ See note	es A1
	(4)	es M1; A1
	$t = \sin^{-1}\left(\frac{-1}{4\sqrt{2}}\right) + \frac{\pi}{4}$ or $t = \cos^{-1}\left(\frac{1}{4\sqrt{2}}\right) - \frac{\pi}{4}$ See note	es dM1
	t = 0.6076875626 = 0.6077 (4 dp) anything that rounds to 0.607	
		[6] 12
	Question Notes	
	VERY IMPORTANT NOTE FOR PART (c)	
(c)	NOTE Candidates who state $t = 0.6077$ with no intermediate working from $4\sin t - 4\cos t$	= -1
	will get 2 nd M0, 2 nd A0, 3 rd M0, 3 rd A0.	-)
	They will not express $4\sin t - 4\cos t$ as either $4\sqrt{2}\sin\left(t - \frac{\pi}{4}\right)$ or $-4\sqrt{2}\cos\left(t - \frac{\pi}{4}\right)$	$+\frac{\pi}{4}$.
	OR use any acceptable alternative method to achieve $t = 0.6077$	
	NOTE Alternative methods for part (c) are given on the next page.	

	Question Alternative Methods for Part (c)		
(c)	Alternative Method 1:		
	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$ Sets their $\frac{dy}{dx}$	$=-\frac{1}{2}$ N	1 1
	eg. $\left(\frac{2\sin t}{1-4\cos t}\right)^2 = \frac{1}{4}$ or $(4\sin t)^2 = (4\cos t - 1)^2$ Squaring to give a correct equation or $(4\sin t + 1)^2 = (4\cos t)^2$ etc.	plied A	.1
	Note: You can also give 1st A1 in this me	ethod	
	for $4\sin t - 4\cos t = -1$ as in the main sch		
	Squares their equation, applies $\sin^2 t + \cos^2 t = 1$ and achie	ves a	
	three term quadratic equation of the form $\pm a \cos^2 t \pm b \cos t \pm a$	c = 0 N	1 1
	or $\pm a \sin^2 t \pm b \sin t \pm c = 0$ or eg. $\pm a \cos^2 t \pm b \cos t = \pm c$ where $a \neq 0, b \neq 0$ and c	≠ 0.	
	• Either $32\cos^2 t - 8\cos t - 15 = 0$ • or $32\sin^2 t + 8\sin t - 15 = 0$ For a correct three term quadratic equa	tion. A	.1
	• Either $\cos t = \frac{8 \pm \sqrt{1984}}{64} = \frac{1 + \sqrt{31}}{8} \Rightarrow t = \cos^{-1}()$ which is dependent on the 2 nd M1 m. Uses correct alge	nark.	M1
	• or $\sin t = \frac{-8 \pm \sqrt{1984}}{64} = \frac{-1 \pm \sqrt{31}}{8} \Rightarrow t = \sin^{-1}()$ Oses correct algebraic processes to give the sign of th		
	t = 0.6076875626 = 0.6077 (4 dp) anything that rounds to 0.	6077 A	.1 [6]
(c)	Alternative Method 2:		
	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$ Sets their $\frac{dy}{dx}$	$=-\frac{1}{2}$ N	4 1
	eg. $(4\sin t - 4\cos t)^2 = (-1)^2$ Squaring to give a correct equal This mark can be implied by a correct equal Note: You can also give 1^{3t} A1 in this mathematical for $4\sin t - 4\cos t = -1$ as in the main sch	ethod	1
	So $16\sin^2 t - 32\sin t \cos t + 16\cos^2 t = 1$		
	Squares their equation, applies	both	
	$\sin^2 t + \cos^2 t = 1 \text{ and } \sin 2t = 2\sin t \cos t$ then achieves an equation of the	form N	11
	teading to $16 - 16 \sin 2t = 1$ $\pm a \pm b \sin 2t = 1$ $16 - 16 \sin 2t = 1$ or equive		.1
	$\left\{\sin 2t = \frac{15}{16} \Rightarrow \right\} t = \frac{\sin^{-1}()}{2}$ Which is dependent on the 2 nd M1 m. Uses correct algebraic processes to give the second of the 2 nd M1 m.	nark. d	M1
	t = 0.6076875626 = 0.6077 (4 dp) anything that rounds to 0.		.1 [6]

		Question Notes
(a)	M1	Sets $y = 1$ to find t and uses their t to find x .
	Note	M1 can be implied by either x or $k = 4 - \frac{\pi}{2}$ or 2.429 or $\frac{\pi}{2} - 4$ or -2.429
	A1	$x \text{ or } k = 4 - \frac{\pi}{2} \text{ or } \frac{8 - \pi}{2}$
	Note	A decimal answer of 2.429 (without a correct exact answer) is A0.
	Note	Allow A1 for a candidate using $t = \frac{\pi}{2}$ to find $x = \frac{\pi}{2} - 4$ and then stating that k must be $4 - \frac{\pi}{2}$ o.e.
(b)	B1	At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working.
	B1	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working.
	M1	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute their t into their expression for $\frac{dy}{dx}$.
	Note	This mark may be implied by their final answer.
		i.e. $\frac{dy}{dx} = \frac{2\sin t}{1 - 4\cos t}$ followed by an answer of -2 (from $t = -\frac{\pi}{2}$) or 2 (from $t = \frac{\pi}{2}$)
	Note	Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$.
(c)	A1	Using $t = -\frac{\pi}{2}$ and not $t = \frac{3\pi}{2}$ to find a correct $\frac{dy}{dt}$ of -2 by correct solution only.
(c)	NOTE	If a candidate uses an incorrect $\frac{dy}{dx}$ expression in part (c) then the accuracy marks are not obtainable.
	1st M1	Sets their $\frac{dy}{dx} = -\frac{1}{2}$
	1st A1	Rearranges to give the correct equation with $\sin t$ and $\cos t$ on the same side.
		eg. $4\sin t - 4\cos t = -1$ or $4\cos t - 4\sin t = 1$ or $\sin t - \cos t = -\frac{1}{4}$ or $\cos t - \sin t = \frac{1}{4}$
		or $4\sin t - 4\cos t + 1 = 0$ or $4\cos t - 4\sin t - 1 = 0$ or $\sin t - \cos t + \frac{1}{4} = 0$ etc. are fine for A1.
	2 nd M1	Rewrites $\pm \lambda \sin t \pm \mu \cos t$ in the form of either $R\cos(t \pm \alpha)$ or $R\sin(t \pm \alpha)$
		where $R \neq 1$ or 0 and $\alpha \neq 0$
	2 nd A1	Correct equation. Eg. $4\sqrt{2}\sin\left(t-\frac{\pi}{4}\right) = -1$ or $-4\sqrt{2}\cos\left(t+\frac{\pi}{4}\right) = -1$
		or $\sqrt{2}\sin\left(t-\frac{\pi}{4}\right) = -\frac{1}{4}$ or $\sqrt{2}\cos\left(t+\frac{\pi}{4}\right) = \frac{1}{4}$, etc.
	Note	Unless recovered, give A0 for $4\sqrt{2}\sin(t-45^\circ)=-1$ or $-4\sqrt{2}\cos(t+45^\circ)=-1$, etc.
	3 rd M1 4 th A1	which is dependent on the 2^{nd} M1 mark. Uses correct algebraic processes to give $t =$ anything that rounds to 0.6077
	Note	Do not give the final A1 mark in (c) if there any extra solutions given in the range $-\frac{2\pi}{3} \le t \le \frac{2\pi}{3}$.
	Note	You can give the final A1 mark in (c) if extra solutions are given outside of $-\frac{2\pi}{3} \le t \le \frac{2\pi}{3}$.
		, ,

Question	Scheme	Marks
Number	Note: You can mark parts (a) and (b) together.	
(a)	$x = 4t + 3$, $y = 4t + 8 + \frac{5}{2t}$	
	$\frac{dx}{dt} = 4, \frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ Both $\frac{dx}{dt} = 4 \text{ or } \frac{dt}{dx} = \frac{1}{4} \text{ and } \frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$	B1
	So, $\frac{dy}{dx} = \frac{4 - \frac{5}{2}t^{-2}}{4} \left\{ = 1 - \frac{5}{8}t^{-2} = 1 - \frac{5}{8t^2} \right\}$ Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$	M1 o.e.
	{When $t = 2$, } $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	
	Way 2: Cartesian Method	[3]
	$\frac{dy}{dx} = 1 - \frac{10}{(x-3)^2}, \text{ simplified or un-simplified.}$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda \pm \frac{\mu}{(x-3)^2}, \ \lambda \neq 0, \mu \neq 0$	M1
	{When $t = 2, x = 11$ } $\frac{dy}{dx} = \frac{27}{32}$ or 0.84375 cao	
	Was 2. Cantadas Wallad	[3]
	Way 3: Cartesian Method $\frac{dy}{dx} = \frac{(2x+2)(x-3)-(x^2+2x-5)}{(x-3)^2}$ Correct expression for $\frac{dy}{dx}$, simplified or un-simplified.	B1
	$\left\{ = \frac{x^2 - 6x - 1}{(x - 3)^2} \right\} \qquad \frac{dy}{dx} = \frac{f'(x)(x - 3) - 1f(x)}{(x - 3)^2},$ where $f(x) = \text{their } "x^2 + ax + b", g(x) = x - 3$	M1
	When $t = 2$, $x = 11$ $\frac{dy}{dx} = \frac{27}{32}$ $\frac{27}{32}$ or 0.84375 cao	
(b)	$\left\{t = \frac{x-3}{4} \implies\right\} y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates t to achieve an equation in only x and y	[3] M1
	$y = x - 3 + 8 + \frac{10}{x - 3}$	
	$y = \frac{(x-3)(x-3) + 8(x-3) + 10}{x-3} or y(x-3) = (x-3)(x-3) + 8(x-3) + 10$	20.01
	or $y = \frac{(x+5)(x-3)+10}{x-3}$ or $y = \frac{(x+5)(x-3)}{x-3} + \frac{10}{x-3}$	dM1
	Correct algebra leading to	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3}, \{a = 2 \text{ and } b = -5\}$ $y = \frac{x^2 + 2x - 5}{x - 3} \text{or } a = 2 \text{ and } b = -5$	A1 cso
		[3] 6

Question Number	Scheme	Marks
(b)	Alternative Method 1 of Equating Coefficients $y = \frac{x^2 + ax + b}{x - 3} \Rightarrow y(x - 3) = x^2 + ax + b$ $y(x - 3) = (4t + 3)^2 + 2(4t + 3) - 5 = 16t^2 + 32t + 10$ $x^2 + ax + b = (4t + 3)^2 + a(4t + 3) + b$	
	$(4t+3)^2 + a(4t+3) + b = 16t^2 + 32t + 10$ Correct method of obtaining an equation in only t, a and b $t : 24 + 4a - 32 \implies a - 2$ Equates their coefficients in t and	M1
	t: $24+4a=32 \Rightarrow a=2$ Equates their coefficients in 7 and finds both $a=$ and $b=$ constant: $9+3a+b=10 \Rightarrow b=-5$	dM1 A1
		[3]
(b)	Alternative Method 2 of Equating Coefficients	
	$\left\{t = \frac{x-3}{4} \implies\right\} y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates t to achieve an equation in only x and y	M1
	$y = x - 3 + 8 + \frac{10}{x - 3} \Rightarrow y = x + 5 + \frac{10}{(x - 3)}$	
	$y(x-3) = (x+5)(x-3) + 10 \implies x^2 + ax + b = (x+5)(x-3) + 10$	dM1
	Correct algebra leading to	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ or equating coefficients to give $a = 2$ and $b = -5$ $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $b = -5$	A1 cso
		[3]

		Question Notes					
(a)	В1	$\frac{dx}{dt} = 4$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ or $\frac{dy}{dt} = \frac{8t^2 - 5}{2t^2}$ or $\frac{dy}{dt} = 4 - 5(2t)^{-2}(2)$, etc.					
	Note	$\frac{dy}{dt}$ can be simplified or un-simplified.					
	Note	You can imply the B1 mark by later working.					
	M1	Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$ or $\frac{dy}{dt}$ multiplied by a candidate's $\frac{dt}{dx}$					
	Note	M1 can be also be obtained by substituting $t = 2$ into both their $\frac{dy}{dt}$ and their $\frac{dx}{dt}$ and then					
		dividing their values the correct way round.					
	Al	$\frac{27}{32}$ or 0.84375 cao					
(b)	M1	Eliminates t to achieve an equation in only x and y.					
	dM1	dependent on the first method mark being awarded. Either: (ignoring sign slips or constant slips, noting that k can be 1)					
		• Combining all three parts of their $\frac{x-3}{x-3} + \frac{10}{8} + \left(\frac{10}{x-3}\right)$ to form a single fraction with a					
		common denominator of $\pm k(x-3)$. Accept three separate fractions with the same					
		denominator.					
		• Combining both parts of their $\underline{x+5} + \left(\frac{10}{x-3}\right)$, (where $\underline{x+5}$ is their $4\left(\frac{x-3}{4}\right) + 8$),					
		to form a single fraction with a common denominator of $\pm k(x-3)$. Accept two separate fractions with the same denominator.					
		• Multiplies both sides of their $y = \underline{x-3} + \frac{10}{8} + \left(\frac{10}{x-3}\right)$ or their $y = \underline{x+5} + \left(\frac{10}{x-3}\right)$ by					
		$\pm k(x-3)$. Note that all terms in their equation must be multiplied by $\pm k(x-3)$.					
	Note	Condone "invisible" brackets for dM1.					
	Al	Correct algebra with no incorrect working leading to $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $b = -5$					
	Note	Some examples for the award of dM1 in (b):					
		dM0 for $y = x - 3 + 8 + \frac{10}{x - 3}$ $\rightarrow y = \frac{(x - 3)(x - 3) + 8 + 10}{x - 3}$. Should be + 8(x - 3) +					
		dM0 for $y = x - 3 + \frac{10}{x - 3} \rightarrow y = \frac{(x - 3)(x - 3) + 10}{x - 3}$. The "8" part has been omitted.					
		dM0 for $y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y = \frac{x(x - 3) + 5 + 10}{x - 3}$. Should be + 5(x - 3) +					
		dM0 for $y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y(x - 3) = x(x - 3) + 5(x - 3) + 10(x - 3)$. Should be just 10.					
	Note	$y = x + 5 + \frac{10}{x - 3}$ $\rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ with no intermediate working is dM1A1.					

Question Number	Scheme	Notes	Marks
	$x = 4 \tan t$, $y = 5\sqrt{3} \sin 2t$, $0 \le t < \frac{\pi}{2}$		
(a) Way 1	$\frac{dx}{dt} = 4\sec^2 t, \frac{dy}{dt} = 10\sqrt{3}\cos 2t$ $\Rightarrow \frac{dy}{dx} = \frac{10\sqrt{3}\cos 2t}{4\sec^2 t} \left\{ = \frac{5}{2}\sqrt{3}\cos 2t\cos^2 t \right\}$	Either both x and y are differentiated correctly with respect to t or their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or applies $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	M1
	ut 4sec 1 (2	Correct $\frac{dy}{dx}$ (Can be implied)	A1 oe
	$\left\{ \text{At } P\left(4\sqrt{3}, \frac{15}{2}\right), \ t = \frac{\pi}{3} \right\}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10\sqrt{3}\cos\left(\frac{2\pi}{3}\right)}{4\sec^2\left(\frac{\pi}{3}\right)}$	dependent on the previous M mark Some evidence of substituting $t = \frac{\pi}{3}$ or $t = 60^{\circ}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	A1 cso
			[4]
(b)	$\left\{10\sqrt{3}\cos 2t = 0 \Rightarrow t = \frac{\pi}{4}\right\}$		
	So $x = 4 \tan\left(\frac{\pi}{4}\right)$, $y = 5\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$	At least one of either $x = 4 \tan\left(\frac{\pi}{4}\right)$ or $y = 5\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 5\sqrt{3}$ or $y = \text{awrt } 8.7$	M1
	Coordinates are $(4, 5\sqrt{3})$	$(4, 5\sqrt{3})$ or $x = 4, y = 5\sqrt{3}$	A1
			[2]
			6

		Question Notes				
(a)	1 st A1	Correct $\frac{dy}{dx}$. E.g. $\frac{10\sqrt{3}\cos 2t}{4\sec^2 t}$ or $\frac{5}{2}\sqrt{3}\cos 2t\cos^2 t$ or $\frac{5}{2}\sqrt{3}\cos^2 t(\cos^2 t - \sin^2 t)$ or any equivalent form.				
	Note	ive the final A0 for a final answer of $-\frac{10}{32}\sqrt{3}$ without reference to $-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$				
	Note	Give the final A0 for more than one value stated for $\frac{dy}{dx}$				
(b)	Note	Also allow M1 for either $x = 4\tan(45)$ or $y = 5\sqrt{3}\sin(2(45))$				
	Note	M1 can be gained by ignoring previous working in part (a) and/or part (b)				
	Note	Give A0 for stating more than one set of coordinates for Q.				
	Note	Writing $x = 4$, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 4)$ is A0.				

Question Number	Scheme Notes			Marks
rumoci	$x = 4 \tan t$, $y = 5\sqrt{3} \sin 2t$, $0 \le t < \frac{\pi}{2}$			
(a) Way 2	$\tan t = \frac{x}{4} \Rightarrow \sin t = \frac{x}{\sqrt{(x^2 + 16)}}, \cos t = \frac{4}{\sqrt{(x^2 + 16)}} \Rightarrow y = \frac{40\sqrt{3}x}{x^2 + 16}$			
	$\begin{cases} u = 40\sqrt{3}x & v = x^2 + 16 \\ \frac{du}{dx} = 40\sqrt{3} & \frac{dv}{dx} = 2x \end{cases}$			
	$\frac{dy}{dx} = \frac{40\sqrt{3}(x^2 + 16) - 2x(40\sqrt{3}x)}{(x^2 + 16)^2} \left\{ = \frac{40\sqrt{3}(16 - x^2)}{(x^2 + 16)^2} \right\}$		$\frac{\pm A(x^2 + 16) \pm Bx^2}{(x^2 + 16)^2}$	M1
	$dx = (x^2 + 16)^2 = (x^2 + 16)^2$	Correct $\frac{dy}{dx}$; simplified or un-simplified		A1
	$\frac{dy}{dx} = \frac{40\sqrt{3}(48+16) - 80\sqrt{3}(48)}{(48+16)^2}$	Some 6	the previous M mark evidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	from	$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$ a correct solution only	A1 cso
		поша	a correct solution only	[4]
(a) Way 3	$y = 5\sqrt{3}\sin\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)$			
	$\frac{dy}{dx} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{2}{1+\left(\frac{x}{4}\right)^{2}}\right)\left(\frac{1}{4}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm A \mathrm{c}$	$\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{1}{1+x^2}\right)$	M1
	$\frac{dx}{dx} \left(\frac{(4/)(1+\left(\frac{x}{4}\right))}{1+\left(\frac{x}{4}\right)} \right) (4/)$	Correct $\frac{dy}{dx}$; simp	plified or un-simplified.	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\sqrt{3}\right)\right)\left(\frac{2}{1+3}\right)\left(\frac{1}{4}\right) \left\{ = 5\sqrt{3}\left(-\frac{1}{2}\right)\left(\frac{1}{$	$\left\{\frac{1}{4}\right\}$ Some 6	dependent on the previous M mark evidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	from	$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$ a correct solution only	A1 cso
			,	[4]

Question Number	Scheme	Notes		Marks
	$x = 3t - 4$, $y = 5 - \frac{6}{t}$, $t > 0$			
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3 \; , \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$			
	$\frac{dy}{dx} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t		M1
			$\frac{-2}{3}$, simplified or un-simplified, in terms of t . See note.	A1 isw
	Award Special Case 1st M1 is	cial Case 1 st M1 if both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are stated correctly and explicitly.		[2]
	Note: You can	recov	er the work for part (a) in part (b).	
(a) Wow 2	$y = 5 - \frac{18}{x+4} \Rightarrow \frac{dy}{dx} = \frac{18}{(x+4)^2} = \frac{18}{(3t)^2}$	2	Writes $\frac{dy}{dx}$ in the form $\frac{\pm \lambda}{(x+4)^2}$, and writes $\frac{dy}{dx}$ as a function of t.	M1
way 2	$x + 4 dx (x + 4)^2 (3t)^2$		Correct un-simplified or simplified answer, in terms of t. See note.	A1 isw
				[2]
(b)	$\left\{t = \frac{1}{2} \Rightarrow\right\} P\left(-\frac{5}{2}, -7\right)$		$x = -\frac{5}{2}$, $y = -7$ or $P\left(-\frac{5}{2}, -7\right)$ seen or implied.	B1
	$\frac{dy}{dx} = \frac{2}{\left(\frac{1}{2}\right)^2}$ and either		Some attempt to substitute $t = 0.5$ into their $\frac{dy}{dx}$	
	• $y - "-7" = "8" \left(x - " - \frac{5}{2}" \right)$ • $"-7" = ("8")(" - \frac{5}{2}") + c$		which contains t in order to find m_T and either	M
			applies $y - (\text{their } y_p) = (\text{their } m_T)(x - \text{their } x_p)$	M1
	So, $y = (\text{their } m_r)x + "c"$		or finds c from (their y_p) = (their m_T)(their x_p) + c	
	T: $y = 8x + 13$		and uses their numerical c in $y = (\text{their } m_y)x + c$ y = 8x + 13 or $y = 13 + 8x$	A1
	,	L	-	A1 cso
	Note: their x_p , their y_p and their m_T must be numerical values in order to award M1			[3]

(c)	$\left\{t = \frac{x+4}{x} \Rightarrow \right\} y = 5 - \frac{6}{(x+2)^2}$	An attempt to eliminate t. See notes.		M1
Way 1	$\left\{t = \frac{x+4}{3} \implies \right\} \ y = 5 - \frac{6}{\left(\frac{x+4}{3}\right)}$	Achie	eves a correct equation in x and y only	A1 o.e.
	$\Rightarrow y = 5 - \frac{18}{x+4} \Rightarrow y = \frac{5(x+4) - 18}{x+4}$			
	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$		$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso
				[3]
(c)	[6] 18		An attempt to eliminate t. See notes.	M1
Way 2	$\left\{ t = \frac{6}{5 - y} \implies \right\} x = \frac{18}{5 - y} - 4$	$t = \frac{1}{5 - y} \Rightarrow \begin{cases} x = \frac{10}{5 - y} - 4 \end{cases}$ Achie		A1 o.e.
	$\Rightarrow (x+4)(5-y) = 18 \Rightarrow 5x - xy + 20 - 4y = 18$			
	$\{ \Rightarrow 5x + 2 = y(x+4) \}$ So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$		$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso
				[3]
	Note: Some or all of the work for part (c) can be recovered in part (a) or part (b)			

Question Number		Scheme	Notes	Marks			
(c)	3 <i>at</i> -	4a+b 3at 4a-b 4a-b	A full method leading to the value of a being found	M1			
Way 3	$y = \frac{1}{3t-1}$	$\frac{4a+b}{4+4} = \frac{3at}{3t} - \frac{4a-b}{3t} = a - \frac{4a-b}{3t} \Rightarrow a = 5$	$y = a - \frac{4a - b}{3t} \text{ and } a = 5$	A1			
	$\frac{4a-b}{3}=6$	$b \Rightarrow b = 4(5) - 6(3) = 2$	Both $a = 5$ and $b = 2$	A1			
				[3]			
		Question No	tes				
(a)	Note	Note Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1					
	Note	You can ignore subsequent working following on from a correct expression for $\frac{dy}{dx}$ in terms of t.					
(b)	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ or $-\left(\text{their } \frac{dy}{dx}\right)$) is M0.					
	Note	Final A1: A correct solution is required from a correct $\frac{dy}{dx}$.					
	Note Final A1: You can ignore subsequent working following on from a correct solution.						
(c)	Note	 Note 1st M1: A full attempt to eliminate t is defined as either rearranging one of the parametric equations to make t the subject and substituting for t in the other parametric equation (only the RHS of the equation required for M mark) rearranging both parametric equations to make t the subject and putting the results equal to each other. 					
	Note Award M1A1 for $\frac{6}{5-y} = \frac{x+4}{3}$ or equivalent.						