Parametric Differentiation 2 - Edexcel Past Exam Questions

1.

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
x=4 \sin \left(t+\frac{\pi}{6}\right), \quad y=3 \cos 2 t, \quad 0 \leq t<2 \pi .
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(b) Find the coordinates of all the points on C where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
2.

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
x=\sqrt{3} \sin 2 t, \quad y=4 \cos ^{2} t, \quad 0 \leq t \leq \pi .
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \sqrt{ } 3 \tan 2 t$, where k is a constant to be determined.
(b) Find an equation of the tangent to C at the point where $t=\frac{\pi}{3}$.

Give your answer in the form $y=a x+b$, where a and b are constants.
(c) Find a cartesian equation of C.
3. A curve C has parametric equations

$$
x=2 \sin t, \quad y=1-\cos 2 t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point where $t=\frac{\pi}{6}$.
(b) Find a cartesian equation for C in the form

$$
\mathrm{y}=\mathrm{f}(x), \quad-k \leq x \leq k,
$$

stating the value of the constant k.
(c) Write down the range of $\mathrm{f}(x)$.
4.

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
x=27 \sec ^{3} t, \quad y=3 \tan t, \quad 0 \leq t \leq \frac{\pi}{3}
$$

(a) Find the gradient of the curve C at the point where $t=\frac{\pi}{6}$.
(b) Show that the cartesian equation of C may be written in the form

$$
y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}, \quad a \leq x \leq b
$$

stating values of a and b.
5.

Figure 3
Figure 3 shows a sketch of the curve C with parametric equations

$$
x=4 \cos \left(t+\frac{\pi}{6}\right), \quad y=2 \sin t, \quad 0 \leq t \leq 2 \pi
$$

(a) Show that

$$
\begin{equation*}
x+y=2 \sqrt{ } 3 \cos t \tag{3}
\end{equation*}
$$

(b) Show that a cartesian equation of C is

$$
(x+y)^{2}+a y^{2}=b
$$

where a and b are integers to be determined.
6.

Figure 4
Figure 4 shows a sketch of part of the curve C with parametric equations

$$
x=3 \tan \theta, \quad y=4 \cos ^{2} \theta, \quad 0 \leq \theta<\frac{\pi}{2}
$$

The point P lies on C and has coordinates $(3,2)$.
The line l is the normal to C at P. The normal cuts the x-axis at the point Q.
Find the x coordinate of the point Q.
(6)

June 14 Q7 (edited)
7.

Figure 3
The curve shown in Figure 3 has parametric equations

$$
x=t-4 \sin t, y=1-2 \cos t, \quad-\frac{2 \pi}{3} \leq t \leq \frac{2 \pi}{3}
$$

The point A, with coordinates $(k, 1)$, lies on the curve.
Given that $k>0$
(a) find the exact value of k,
(b) find the gradient of the curve at the point A.

There is one point on the curve where the gradient is equal to $-\frac{1}{2}$.
(c) Find the value of t at this point, showing each step in your working and giving your answer to 4 decimal places.
[Solutions based entirely on graphical or numerical methods are not acceptable.]
8. A curve C has parametric equations

$$
x=4 t+3, \quad y=4 t+8+\frac{5}{2 t}, \quad t \neq 0 .
$$

(a) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point on C where $t=2$, giving your answer as a fraction in its simplest form.
(b) Show that the cartesian equation of the curve C can be written in the form

$$
y=\frac{x^{2}+a x+b}{x-3}, \quad x \neq 3,
$$

where a and b are integers to be determined.
9.

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
x=4 \tan t, \quad y=5 \sqrt{3} \sin 2 t, \quad 0 \leq t<\frac{\pi}{2} .
$$

The point P lies on C and has coordinates $\left(4 \sqrt{3}, \frac{15}{2}\right)$.
(a) Find the exact value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point P.

Give your answer as a simplified surd.
The point Q lies on the curve C, where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
(b) Find the exact coordinates of the point Q.
10. The curve C has parametric equations

$$
x=3 t-4, \quad y=5-\frac{6}{t}, \quad t>0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t

The point P lies on C where $t=\frac{1}{2}$
(b) Find the equation of the tangent to C at the point P. Give your answer in the form $y=p x+q$, where p and q are integers to be determined.
(c) Show that the cartesian equation for C can be written in the form

$$
\begin{equation*}
y=\frac{a x+b}{x+4}, \quad x>-4 \tag{3}
\end{equation*}
$$

where a and b are integers to be determined.

