Parametric Equations 2 - Edexcel Past Exam Questions

1.

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
\begin{equation*}
x=\sqrt{3} \sin 2 t, \quad y=4 \cos ^{2} t, \quad 0 \leq t \leq \pi \tag{3}
\end{equation*}
$$

Find a cartesian equation of C.
2. A curve C has parametric equations

$$
x=2 \sin t, \quad y=1-\cos 2 t, \quad-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}
$$

(a) Find a cartesian equation for C in the form

$$
\begin{equation*}
\mathrm{y}=\mathrm{f}(x), \quad-k \leq x \leq k, \tag{3}
\end{equation*}
$$

stating the value of the constant k.
(b) Write down the range of $\mathrm{f}(x)$.

June 13 Q4 (edited)
3.

Figure 2
Figure 2 shows a sketch of the curve C with parametric equations

$$
x=27 \sec ^{3} t, \quad y=3 \tan t, \quad 0 \leq t \leq \frac{\pi}{3}
$$

Show that the cartesian equation of C may be written in the form

$$
y=\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}, \quad a \leq x \leq b
$$

stating values of a and b.
4.

Figure 3
Figure 3 shows a sketch of the curve C with parametric equations

$$
x=4 \cos \left(t+\frac{\pi}{6}\right), \quad y=2 \sin t, \quad 0 \leq t \leq 2 \pi
$$

(a) Show that

$$
\begin{equation*}
x+y=2 \sqrt{ } 3 \cos t \tag{3}
\end{equation*}
$$

(b) Show that a cartesian equation of C is

$$
(x+y)^{2}+a y^{2}=b
$$

where a and b are integers to be determined.
5. A curve C has parametric equations

$$
x=4 t+3, \quad y=4 t+8+\frac{5}{2 t}, \quad t \neq 0 .
$$

Show that the cartesian equation of the curve C can be written in the form

$$
y=\frac{x^{2}+a x+b}{x-3}, \quad x \neq 3,
$$

where a and b are integers to be determined.
6. The curve C has parametric equations

$$
x=3 t-4, \quad y=5-\frac{6}{t}, \quad t>0
$$

Show that the cartesian equation for C can be written in the form

$$
y=\frac{a x+b}{x+4}, \quad x>-4
$$

where a and b are integers to be determined.

