

Partial Fractions in Integration 2 - Edexcel Past Exam Questions MARK SCHEME

Question 1

Question Number	Scheme	Marks B1	
	(a) $1 = A(3x-1)^2 + Bx(3x-1) + Cx$		
	$x \rightarrow 0$ $(1=A)$	M1	
	$x \rightarrow \frac{1}{3}$ $1 = \frac{1}{3}C \implies C = 3$ any two constants correct	A1	
	Coefficients of x^2		
	$0 = 9A + 3B \implies B = -3$ all three constants correct	A1 (4)	
	(b)(i) $\int \left(\frac{1}{x} - \frac{3}{3x - 1} + \frac{3}{(3x - 1)^2}\right) dx$		
	$= \ln x - \frac{3}{3} \ln (3x - 1) + \frac{3}{(-1)^3} (3x - 1)^{-1} (+C)$	M1 A1ft A1ft	
	$\left(= \ln x - \ln (3x - 1) - \frac{1}{3x - 1} (+C) \right)$		
	(ii) $\int_{1}^{2} \mathbf{f}(x) dx = \left[\ln x - \ln (3x - 1) - \frac{1}{3x - 1} \right]_{1}^{2}$		
	$=\left(\ln 2 - \ln 5 - \frac{1}{5}\right) - \left(\ln 1 - \ln 2 - \frac{1}{2}\right)$	M1	
	$=\ln\frac{2\times 2}{5}+\dots$	M1	
	$=\frac{3}{10}+\ln\left(\frac{4}{5}\right)$	A1 (6)	
		[10]	

Question Number	Scheme		Notes	Marks	
	$\int \frac{3y-4}{y(3y+2)} dy, \ y > 0, \ (ii) \int_{0}^{3} \sqrt{\left(\frac{x}{4-x}\right)} dx, \ x = 4\sin^{2}\theta$				
	$\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y-4 = A(3y+2) + By$ $y=0 \Rightarrow -4 = 2A \Rightarrow A = -2$		See notes	M1	
Way 1			At least one of their $A = -2$ or their $B = 9$	A1	
	$y = -\frac{2}{3} \implies -6 = -\frac{2}{3}B \implies B = 9$ Both their A = -2 and their $B = 9$		A1		
	Integra			ive at least one of either	
	$\int 3y - 4 + y = \int -2 + 9 + y$	$\frac{A}{y} \rightarrow \pm$	λlny or($\frac{B}{3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $A \neq 0, B \neq 0$	M1
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{-2}{y} + \frac{9}{(3y+2)} \mathrm{d}y$	441.000			
	•••••••	At leas		rrectly followed through m their A or from their B	A1 ft
	$= -2\ln y + 3\ln(3y+2) \{+c\}$	$-2\ln y + 3$	$\sin(3y + 2)$	or $-2\ln y + 3\ln(y + \frac{2}{3})$	
		simpli	fied or un-sin	with correct bracketing, nplified. Can apply isw.	A1 cao
			[6]		

	Question Notes			
	1 st M1	Writing $\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)}$ and a complete method for finding the value of at least one		
		of their A or their B.		
	Note	M1A1 can be implied for writing down either $\frac{3y-4}{y(3y+2)} \equiv \frac{-2}{y} + \frac{\text{their } B}{(3y+2)}$		
		or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working.		
	Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)		
	Give 2^{nd} M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$			
	Note	but allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$		

Partial fractions in Integration

	Scheme		Notes	Marks
Way 2	$\frac{3y-4}{y(3y+2)} dy = \int \frac{6y+2}{3y^2+2y} dy - \int \frac{3y+6}{y(3y+2)} dy$			
	$\frac{3y+6}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y+6 = A(3y+2) + By$ $y=0 \Rightarrow 6 = 2A \Rightarrow A=3$		See notes	M1
			At least one of their $A = 3$ or their $B = -6$	A1
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 3$ and their $B = -6$	A1
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$ = $\int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3}{y} \mathrm{d}y + \int \frac{6}{(3y+2)} \mathrm{d}y$	or $\frac{A}{y} \rightarrow$	Integrates to give at least one of either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	М1
	$\int 3y^2 + 2y$ $\int y$ $\int (3y+2)$	At lea	ast one term correctly followed through	A1 ft
	$= \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \{+c\}$		$ln(3y^2+2y) - 3ln y + 2ln(3y+2)$ with correct bracketing, simplified or un-simplified	A1 cao
				[6]
Way 3	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y+1}{3y^2+2y} \mathrm{d}y - \int \frac{5}{y(3y+1)} \mathrm{d}y$			
	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + C$	- By	See notes	M1
	$y = 0 \implies 5 = 2A \implies A = \frac{5}{2}$		At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$	A1
	$y = -\frac{2}{3} \implies 5 = -\frac{2}{3}B \implies B = -\frac{15}{2}$		Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$	A1
	$\int \frac{3y-4}{y(3y+2)} dy$ = $\int \frac{3y+1}{2} dy - \int \frac{5}{2} dy + \int \frac{15}{2} dy$		Integrates to give at least one of either $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	М1
	$\int 3y^2 + 2y$ $\int y$ $\int y$ $(3y + 2)$	At least one term correctly followed through		A1 ft
	$= \int \frac{3y+1}{3y^2+2y} \mathrm{d}y - \int \frac{5}{2} \frac{1}{y} \mathrm{d}y + \int \frac{15}{(3y+2)} \mathrm{d}y$ $= \frac{1}{2} \ln(3y^2+2y) - \frac{5}{2} \ln y + \frac{5}{2} \ln(3y+2) \left\{+c\right\}$		$\frac{1}{2}\ln(3y^2 + 2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y + 2)$ with correct bracketing, simplified or un-simplified	A1 cao
				[6]

	Cahama	Natas	1	
	Scheme		Notes	
Way 4	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y}{y(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$			
	$= \int \frac{3}{(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$			
	$\frac{4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \implies 4 = A(3y+2) + By$ $y = 0 \implies 4 = 2A \implies A = 2$ $y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		See notes	M1
			At least one of their $A = 2$ or their $B = -6$	A1
			Both their $A = 2$ and their $B = -6$	A1
	$\int \frac{3y - 4}{y(3y + 2)} dy$ = $\int \frac{3}{3y + 2} dy - \int \frac{2}{y} dy + \int \frac{6}{(3y + 2)} dy$	$\frac{C}{(3y+2)}$	Integrates to give at least one of either $\rightarrow \pm \alpha \ln(3y+2)$ or $\frac{A}{y} \rightarrow \pm \lambda \ln y$ or $\frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2),$ $A \neq 0, B \neq 0, C \neq 0$	M1
	$\int 3y + 2^{-3y} \int y^{-3y} \int (3y + 2)^{-3y}$	At lea	ast one term correctly followed through	A1 ft
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \{+c\}$		$\ln(3y+2) - 2\ln y + 2\ln(3y+2)$	
			with correct bracketing, simplified or un-simplified	A1 cao
				[6]