

Sigma Notation & Recurrence Relations - Edexcel Past Exam Questions

- 1. The *r*th term of an arithmetic series is (2r-5).
 (a) Write down the first three terms of this series.
 (2)

 (b) State the value of the common difference.
 (1)

 (c) Show that $\sum_{r=1}^{n} (2r-5) = n(n-4)$.
 (3)

 Jan 05 Q5
- **2.** The sequence of positive numbers $u_1, u_2, u_3, ...,$ is given by

$$u_{n+1} = (u_n - 3)^2, \qquad u_1 = 1.$$

- (a) Find u₂, u₃ and u₄.
 (b) Write down the value of u₂₀.
 (1)
 - Jan 06 Q2

- 3. A sequence a_1, a_2, a_3, \ldots is defined by
 - $a_1 = 3,$ $a_{n+1} = 3a_n - 5, \quad n \ge 1.$
 - (a) Find the value a_2 and the value of a_3 .

(2)

(b) Calculate the value of $\sum_{r=1}^{5} a_r$ (3)

June 06 Q4

4. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = k,$$

 $a_{n+1} = 3a_n + 5, n \ge 1,$

where *k* is a positive integer.

- (a) Write down an expression for a_2 in terms of k. (1)
- (b) Show that $a_3 = 9k + 20$. (2)

(c) (i) Find
$$\sum_{r=1}^{4} a_r$$
 in terms of k.
(ii) Show that $\sum_{r=1}^{4} a_r$ is divisible by 10. (4)
June 07 Q8

5. A sequence is given by

$$x_1 = 1,$$

$$x_{n+1} = x_n(p + x_n),$$

where *p* is a constant ($p \neq 0$).

- (a) Find x_2 in terms of p. (1)
- (b) Show that $x_3 = 1 + 3p + 2p^2$. (2)

Given that $x_3 = 1$,

(c)	find the value of <i>p</i> ,	(3)
-----	------------------------------	-----

- (d) write down the value of x_{2008} .
 - Jan 08 Q7

(2)

June 08 Q5

(1)

A sequence x_1, x_2, x_3, \dots is defined by 6.

> $x_1 = 1$, $x_{n+1} = ax_n - 3, \quad n \ge 1,$ where *a* is a constant. (a) Find an expression for x_2 in terms of a. (1) (*b*) Show that $x_3 = a^2 - 3a - 3$. (2) Given that $x_3 = 7$, (c) find the possible values of a. (3)

A sequence a_1, a_2, a_3, \dots is defined by 7.

> $a_1 = k$, $a_{n+1}=2a_n-7, \quad n\geq 1,$ (a) Write down an expression for a_2 in terms of k.

(*b*) Show that $a_3 = 4k - 21$. (2)

Given that
$$\sum_{r=1}^{4} a_r = 43$$
,

where *k* is a constant.

(<i>c</i>)	find the value of <i>k</i> .	(4)
		June 09 Q7

(4)

Jan 11 Q4

8. A sequence of positive numbers is defined by

$$a_{n+1} = \sqrt{(a_n^2 + 3)}, \quad n \ge 1$$

 $a_1 = 2.$

(a) Find a_2 and a_3 , leaving your answers in surd form. (2)

- (b) Show that $a_5 = 4$. (2) June 10 Q5
- 9. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = 2,$$
$$a_{n+1} = 3a_n - c$$

where *c* is a constant.

(a) Find an expression for a_2 in terms of c. (1)

Given that
$$\sum_{i=1}^{3} a_i = 0$$
,

(*b*) find the value of *c*.

10. A sequence a_1, a_2, a_3, \dots , is defined by

$$=k,$$

 a_1

$$a_{n+1} = 5 a_n + 3, \quad n \ge 1,$$

where *k* is a positive integer.

- (a) Write down an expression for a_2 in terms of k. (1)
- (b) Show that $a_3 = 25k + 18$. (2)
- (c) (i) Find $\sum_{r=1}^{4} a_r$ in terms of k, in its simplest form.

(ii) Show that
$$\sum_{r=1}^{4} a_r$$
 is divisible by 6. (4)
June 11 Q5