Sigma Notation \& Recurrence Relations - Edexcel Past Exam Questions

1. The r th term of an arithmetic series is $(2 r-5)$.
(a) Write down the first three terms of this series.
(b) State the value of the common difference.
(c) Show that $\sum_{r=1}^{n}(2 r-5)=n(n-4)$.

Jan 05 Q5
2. The sequence of positive numbers $u_{1}, u_{2}, u_{3}, \ldots$, is given by

$$
u_{n+1}=\left(u_{n}-3\right)^{2}, \quad u_{1}=1
$$

(a) Find u_{2}, u_{3} and u_{4}.
(b) Write down the value of u_{20}.
3. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1}=3 \\
& a_{n+1}=3 a_{n}-5, \quad n \geq 1
\end{aligned}
$$

(a) Find the value a_{2} and the value of a_{3}.
(b) Calculate the value of $\sum_{r=1}^{5} a_{r}$

June 06 Q4
4. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{gathered}
a_{1}=k \\
a_{n+1}=3 a_{n}+5, \quad n \geq 1
\end{gathered}
$$

where k is a positive integer.
(a) Write down an expression for a_{2} in terms of k.
(b) Show that $a_{3}=9 k+20$.
(c) (i) Find $\sum_{r=1}^{4} a_{r}$ in terms of k.
(ii) Show that $\sum_{r=1}^{4} a_{r}$ is divisible by 10 .
5. A sequence is given by

$$
\begin{aligned}
& x_{1}=1, \\
& x_{n+1}=x_{n}\left(p+x_{n}\right),
\end{aligned}
$$

where p is a constant $(p \neq 0)$.
(a) Find x_{2} in terms of p.
(b) Show that $x_{3}=1+3 p+2 p^{2}$.

Given that $x_{3}=1$,
(c) find the value of p,
(d) write down the value of x_{2008}.

Jan 08 Q7
6. A sequence $x_{1}, x_{2}, x_{3}, \ldots$ is defined by

$$
\begin{gathered}
x_{1}=1, \\
x_{n+1}=a x_{n}-3, \quad n \geq 1,
\end{gathered}
$$

where a is a constant.
(a) Find an expression for x_{2} in terms of a.
(b) Show that $x_{3}=a^{2}-3 a-3$.

Given that $x_{3}=7$,
(c) find the possible values of a.
7. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{aligned}
& a_{1}=k, \\
& a_{n+1}=2 a_{n}-7, \quad n \geq 1,
\end{aligned}
$$

where k is a constant.
(a) Write down an expression for a_{2} in terms of k.
(b) Show that $a_{3}=4 k-21$.

Given that $\sum_{r=1}^{4} a_{r}=43$,
(c) find the value of k.
8. A sequence of positive numbers is defined by

$$
\begin{align*}
a_{n+1} & =\sqrt{ }\left(a_{n}^{2}+3\right), \quad n \geq 1 \\
a_{1} & =2 \tag{2}
\end{align*}
$$

(a) Find a_{2} and a_{3}, leaving your answers in surd form.
(b) Show that $a_{5}=4$.

June 10 Q5
9. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by

$$
\begin{gathered}
a_{1}=2, \\
a_{n+1}=3 a_{n}-c
\end{gathered}
$$

where c is a constant.
(a) Find an expression for a_{2} in terms of c.

Given that $\sum_{i=1}^{3} a_{i}=0$,
(b) find the value of c.
10. A sequence $a_{1}, a_{2}, a_{3}, \ldots$, is defined by

$$
\begin{aligned}
& \quad a_{1}=k \\
& a_{n+1}=5 a_{n}+3, \quad n \geq 1
\end{aligned}
$$

where k is a positive integer.
(a) Write down an expression for a_{2} in terms of k.
(b) Show that $a_{3}=25 k+18$.
(c) (i) Find $\sum_{r=1}^{4} a_{r}$ in terms of k, in its simplest form.
(ii) Show that $\sum_{r=1}^{4} a_{r}$ is divisible by 6 .

