

Trapezium Rule 2 - Edexcel Past Exam Questions MARK SCHEME

Question Number	Scheme	Marks				
(a)	0.73508	B1 cao				
(b)	Area $\approx \frac{1}{2} \times \frac{\pi}{8}$; $\times \left[0 + 2 \left(\text{their } 0.73508 + 1.17157 + 1.02280 \right) + 0 \right]$	[1] B1 <u>M1</u>				
	$= \frac{\pi}{16} \times 5.8589 = 1.150392325 = 1.1504 \text{ (4 dp)}$ awrt 1.1504	A1 [3]				
(c)	$\left\{ u = 1 + \cos x \right\} \implies \frac{\mathrm{d}u}{\mathrm{d}x} = -\sin x$	<u>B1</u>				
	$\left\{ \int \frac{2\sin 2x}{(1+\cos x)} \mathrm{d}x = \right\} \int \frac{2(2\sin x \cos x)}{(1+\cos x)} \mathrm{d}x$ $\sin 2x = 2\sin x \cos x$	B1				
	$= \int \frac{4(u-1)}{u} \cdot (-1) du \left\{ = 4 \int \frac{(1-u)}{u} du \right\}$	M1				
	$=4\int \left(\frac{1}{u}-1\right)du=4\left(\ln u-u\right)+c$	dM1				
	$= 4\ln(1+\cos x) - 4(1+\cos x) + c = 4\ln(1+\cos x) - 4\cos x + k$ AG	A1 cso [5]				
(d)	$= \left[4\ln\left(1 + \cos\frac{\pi}{2}\right) - 4\cos\frac{\pi}{2} \right] - \left[4\ln\left(1 + \cos 0\right) - 4\cos 0 \right]$ Applying limits $x = \frac{\pi}{2}$ and $x = 0$ either way round.	M1				
	$= [4\ln 1 - 0] - [4\ln 2 - 4]$					
	$\pm 4(1 - \ln 2)$ or $\pm 4 - 4 \ln 2$ {= 1.227411278} $\pm (4 - 4 \ln 2)$ or awrt ± 1.2 ,	A1				
	however found. Error = $ (4 - 4 \ln 2) - 1.1504 $ awrt ± 0.077 = 0.0770112776 = 0.077 (2sf) or awrt $\pm 6.3(\%)$	A1 cso [3]				
		12				
(a)	B1: 0.73508 correct answer only. Look for this on the table or in the candidate's working.					
(b)	B1 : Outside brackets $\frac{1}{2} \times \frac{\pi}{8}$ or $\frac{\pi}{16}$ or awrt 0.196					
	M1: For structure of trapezium rule [
	A1: anything that rounds to 1.1504 Bracketing mistake: Unless the final answer implies that the calculation has been done correct	etly				
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8} + 2$ (their 0.73508 + 1.17157 + 1.02280) (nb: answer of 6.0552).	cuy				
	Award B1M0A0 for $\frac{1}{2} \times \frac{\pi}{8}$ (0 + 0) + 2(their 0.73508 + 1.17157 + 1.02280) (nb: answer of 5.8589)	9).				
	Alternative method for part (b): Adding individual trapezia					
	Area $\approx \frac{\pi}{8} \times \left[\frac{0 + 0.73508}{2} + \frac{0.73508 + 1.17157}{2} + \frac{1.17157 + 1.02280}{2} + \frac{1.02280 + 0}{2} \right] = 1.15$	50392325				
	B1: $\frac{\pi}{9}$ and a divisor of 2 on all terms inside brackets.					
	M1: One of first and last ordinates, two of the middle ordinates inside brackets ignoring the 2. A1: anything that rounds to 1.1504					

Question Number	Scheme		Mark	s
	(a) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		M1	
	Area = $\frac{1}{2} \times 1()$ $\approx (0.6931 + 2(1.9605 + 3.1034) + 4.1589)$		B1 M1	
	(b) $\int x^{\frac{1}{2}} \ln 2x dx = \frac{2}{3} x^{\frac{3}{2}} \ln 2x - \int \frac{2}{3} x^{\frac{3}{2}} \times \frac{1}{x} dx$	49 cao	A1 M1 A1	(4)
	$= \frac{2}{3}x^{\frac{3}{2}}\ln 2x - \int \frac{2}{3}x^{\frac{1}{2}} dx$ $= \frac{2}{3}x^{\frac{3}{2}}\ln 2x - \frac{4}{9}x^{\frac{3}{2}} (+C)$		M1 A1	(4)
	(c) $\left[\frac{2}{3}x^{\frac{3}{2}}\ln 2x - \frac{4}{9}x^{\frac{3}{2}}\right]_{1}^{4} = \left(\frac{2}{3}4^{\frac{3}{2}}\ln 8 - \frac{4}{9}4^{\frac{3}{2}}\right) - \left(\frac{2}{3}\ln 2 - \frac{4}{9}\right)$ $= (16\ln 2)$ Using or implying $\ln 2^{n} = \frac{46}{3}\ln 2 - \frac{28}{9}$	nln2	M1 M1	(2)
	$=\frac{1}{3}$ m $2-\frac{1}{9}$		A1	(3) [11]

Question Number	Scheme	Marks
(a)	1.0981	B1 cao [1]
(b)	Area $\approx \frac{1}{2} \times 1$; $\times \left[0.5 + 2(0.8284 + \text{their } 1.0981) + 1.3333 \right]$	B1; <u>M1</u>
	$= \frac{1}{2} \times 5.6863 = 2.84315 = 2.843 \text{ (3 dp)}$ 2.843 or awrt 2.843	A1
		[3]
(c)	$\left\{ u = 1 + \sqrt{x} \right\} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = 2(u-1)$	<u>B1</u>
	$\left\{ \int \frac{x}{1+\sqrt{x}} dx = \right\} \int \frac{(u-1)^2}{u} \cdot 2(u-1) du$ $\int \frac{(u-1)^2}{u} \cdot \dots \cdot \int $	М1
	$\int \frac{(u-1)^2}{u} \cdot 2(u-1) du$	A1
	$= 2 \int \frac{(u-1)^3}{u} du = \{2\} \int \frac{(u^3 - 3u^2 + 3u - 1)}{u} du$ Expands to give a "four term" cubic in u. Eg: $\pm Au^3 \pm Bu^2 \pm Cu \pm D$	M1
	$= \{2\} \int \left(u^2 - 3u + 3 - \frac{1}{u}\right) du$ An attempt to divide at least three terms in their cubic by u . See notes.	M1
		A1
	Area(R) = $\left[\frac{2u^3}{3} - 3u^2 + 6u - 2\ln u\right]_2^3$	
	$= \left(\frac{2(3)^3}{3} - 3(3)^2 + 6(3) - 2\ln 3\right) - \left(\frac{2(2)^3}{3} - 3(2)^2 + 6(2) - 2\ln 2\right)$ Applies limits of 3 and 2 in <i>u</i> or 4 and 1 in <i>x</i> and subtracts either way round.	M1
	$= \frac{11}{3} + 2\ln 2 - 2\ln 3 \text{or} \frac{11}{3} + 2\ln \left(\frac{2}{3}\right) \text{ or} \frac{11}{3} - \ln \left(\frac{9}{4}\right), \text{ etc}$ Correct exact answer or equivalent.	A1
		[8] 12

Question Number	Scheme	М	arks				
(a)	6.248046798 = 6.248 (3dp) 6.248 or awrt 6.248	B1					
	1		[1]				
(b)	Area $\approx \frac{1}{2} \times 2$; $\times \left[3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223 \right]$	B1;]	<u>M1</u>				
	= 49.369 = 49.37 (2 dp) 49.37 or awrt 49.37	A1					
			[3]				
(c)	$\left\{ \int (4te^{-\frac{1}{3}t} + 3) dt \right\} = -12te^{-\frac{1}{3}t} - \int -12e^{-\frac{1}{3}t} \{dt\} \qquad \pm Ate^{-\frac{1}{3}t} \pm B \int e^{-\frac{1}{3}t} \{dt\}, \ A \neq 0, B \neq 0$	M1					
(0)	See notes. $3 \rightarrow 3t$	A1					
	$3 \rightarrow 3i$	В1					
	= -1216 - 306 (+ 31)	A1					
	$\left[-12t e^{-\frac{1}{3}t} - 36 e^{-\frac{1}{3}t} + 3t \right]^{8} =$						
	Substitutes limits of 8 and 0 into an integrated function of the form of						
	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$						
		dM1					
	$\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} + Bt$ and						
	subtracts the correct way round.						
	$= \left(-96e^{\frac{8}{3}} - 36e^{\frac{8}{3}} + 24\right) - \left(0 - 36 + 0\right)$						
	$= 60 - 132e^{\frac{8}{3}} $ $ 60 - 132e^{\frac{8}{3}} $	A1					
	= 60 - 132e ³	Α.	[6				
	_==		Į,				
(d)	Difference = $60 - 132e^{-\frac{8}{3}} - 49.37 = 1.458184439 = 1.46 (2 dp)$ 1.46 or awrt 1.46	B1					
			[1				
	Notes for Question		1				
(a)	Notes for Question B1: 6.248 or awrt 6.248. Look for this on the table or in the candidate's working.						
(b)	B1: Outside brackets $\frac{1}{2} \times 2$ or 1						
	M1: For structure of trapezium rule						
	A1: 49.37 or anything that rounds to 49.37						
	Note: It can be possible to award: (a) B0 (b) B1M1A1 (awrt 49.37) Note: Working must be seen to demonstrate the use of the trapezium rule. Note: actual area is 50.						
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly						
	Award B1M0A0 for $1 + 3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223$ (nb: answer of 50.369).						

Notes for Question Continued

(b) ctd Alternative method for part (b): Adding individual trapezia

Area
$$\approx 2 \times \left[\frac{3+7.107}{2} + \frac{7.107+7.218}{2} + \frac{7.218+6.248}{2} + \frac{6.248+5.223}{2} \right] = 49.369$$

B1: 2 and a divisor of 2 on all terms inside brackets.

M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.

A1: anything that rounds to 49.37

(c) M1: For
$$4te^{-\frac{1}{3}t} \to \pm Ate^{-\frac{1}{3}t} \pm B \int e^{-\frac{1}{3}t} \{dt\}, A \neq 0, B \neq 0$$

A1: For $te^{-\frac{1}{3}t} \rightarrow \left(-3te^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$ (some candidates lose the 4 and this is fine for the first A1 mark).

or
$$4te^{-\frac{1}{3}t} \rightarrow 4\left(-3te^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$$
 or $-12te^{-\frac{1}{3}t} - \int -12e^{-\frac{1}{3}t}$ or $12\left(-te^{-\frac{1}{3}t} - \int -e^{-\frac{1}{3}t}\right)$

These results can be implied. They can be simplified or un-simplified.

B1: $3 \rightarrow 3t$ or $3 \rightarrow 3x$ (bod).

Note: Award B0 for 3 integrating to 12t (implied), which is a common error when taking out a factor of 4.

Be careful some candidates will factorise out 4 and have $4\left(\dots + \frac{3}{4}\right) \rightarrow 4\left(\dots + \frac{3}{4}t\right)$

which would then be fine for B1.

Note: Allow B1 for $\int_0^8 3 dt = 24$

A1: For correct integration of $4te^{-\frac{1}{3}t}$ to give $-12te^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t}$ or $4\left(-3te^{-\frac{1}{3}t} - 9e^{-\frac{1}{3}t}\right)$ or equivalent.

This can be simplified or un-simplified.

dM1: Substitutes limits of 8 and 0 into an integrated function of the form of either $\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t}$ or

$$\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} + Bt$$
 and subtracts the correct way round.

Note: Evidence of a proper consideration of the limit of 0 (as detailed in the scheme) is needed for dM1. So, just subtracting zero is M0.

A1: An exact answer of $60 - 132e^{-\frac{8}{3}}$. A decimal answer of 50.82818444... without a correct answer is A0.

Note: A decimal answer of 50.82818444... without a correct exact answer is A0.

Note: If a candidate gains M1A1B1A1 and then writes down 50.8 or awrt 50.8 with no method for substituting limits of 8 and 0, then award the final M1A0.

IMPORTANT: that is fine for candidates to work in terms of x rather than t in part (c).

Note: The "3t" is needed for B1 and the final A1 mark.

(d) B1: 1.46 or awrt 1.46 or -1.46 or awrt -1.46.

Candidates may give correct decimal answers of 1.458184439... or 1.459184439...

Note: You can award this mark whether or not the candidate has answered part (c) correctly.

Question Number				Scher	ne		Marks	5
	x y	1 1.42857	2 0.90326	3 0.682116	4 0.55556	$y = \frac{10}{2x + 5\sqrt{x}}$		
(a)	$\{ At \ x = 3 \}$	y = 0.68	3212 (5 dp)			0.68212	B1 cao	
(b)	$\frac{1}{2} \times 1 \times \underline{\boxed{1}}$.42857 + 0	.55556+2(0	.90326 + their 0	.68212)]	Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ For structure of []	B1 aef M1	[1]
	$\left\{=\frac{1}{2}(5.15)\right\}$	5489)} = 2	.577445 = 2.5	5774 (4 dp)		anything that rounds to 2.5774	A1	[3]
(c)		verestimate						[-]
		son such as top of} trap	ezia lie abov	e the curve				
	• a	diagram w	hich gives re	ference to the ex	tra area			
		oncave or o					B1	
	• <u>d</u>	$\frac{y}{ x^2 } > 0$ (ca	n be implied))				
		ends inward						
	• ct	irves down	wards					[1]
(d)	$u = \sqrt{x} = \sqrt{x}$	\Rightarrow $\frac{du}{dx} = \frac{1}{2}$	$x^{-\frac{1}{2}}$ or $\frac{dx}{du}$	= 2 <i>u</i>			В1	
	$\int \frac{10}{2u^2}$	0 + 5u . 2u di	ı	Either $\left\{\int\right\} \frac{1}{\alpha}$	$\frac{\pm ku}{u^2 \pm \beta u} \left\{ du \right\}$	$\int \int \frac{\pm k}{u(\alpha u^2 \pm \beta u)} \{du\}$	M1	
	[[2	20 .]	20		±λln($(2u+5)$ or $\pm \lambda \ln\left(u+\frac{5}{2}\right)$, $\lambda \neq 0$	M1	
	$=\int \frac{1}{2u}$	$+5$ du $\}$	$= \frac{20}{2} \ln(2u +$	-5)	$\frac{20}{2u+5}$ \rightarrow	with no other terms. $\frac{20}{2}\ln(2u+5) \text{ or } 10\ln\left(u+\frac{5}{2}\right)$	A1 cso	
	(-)		$+5)-10\ln(2(1)$	+ 5)	Substitutes limits of 2 and 1 in u (or 4 and 1 in x) and subtracts the correct way round.	M1	
	10ln9 - 1	10 l n7 or	$10\ln\left(\frac{9}{7}\right)$ or	20 ln 3 – 10 ln 7	7		A1 oe cs	0
			(/)					[6] 11
					estion Note			
(a)						or in the candidate's working.		
(b)	B1 Ou	itside brack	$\frac{1}{2} \times 1$ or	$\frac{1}{2}$ or equivalent				
	M1 Fo	r structure	of trapezium	rule[]			
			allowed [eg rounds to 2.5		a y-ordinate o	r an extra y-ordinate or a repeated	y ordinate].
	Note W	orking mus	t be seen to d	demonstrate the	use of the trap	ezium rule. (Actual area is 2.5131	14428)	

Jem 15	34.5	
(b) contd	Note	Award B1M1A1 for $\frac{1}{2}$ (1.42857 + 0.55556) + (0.90326 + their 0.68212) = 2.577445
		<u>Bracketing mistake</u> : Unless the final answer implies that the calculation has been done correctly award B1M0A0 for $\frac{1}{2} \times 1 + 1.42857 + 2(0.90326 + \text{their } 0.68212) + 0.55556$ (nb: answer of 5.65489).
		award B1M0A0 for $\frac{1}{2} \times 1$ (1.42857 + 0.55556) + 2(0.90326 + their 0.68212) (nb: answer of 4.162825).
		Alternative method: Adding individual trapezia $Area \approx 1 \times \left[\frac{1.42857 + 0.90326}{2} + \frac{0.90326 + "0.68212"}{2} + \frac{"0.68212" + 0.55556}{2} \right] = 2.577445$
	B1	B1: 1 and a divisor of 2 on all terms inside brackets.
	M1 A1	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2. A1: anything that rounds to 2.5774
(c)	B1	Overestimate and either trapezia lie above curve or a diagram that gives reference to the extra area
		eg. This diagram is sufficient. It must show the top of a trapezium lying above the curve.
		or concave or convex or $\frac{d^2y}{dx^2} > 0$ (can be implied) or bends inwards or curves downwards.
(d)	Note B1	Reason of "gradient is negative" by itself is B0. $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \text{ or } du = \frac{1}{2\sqrt{x}} dx \text{ or } 2\sqrt{x} du = dx \text{ or } dx = 2u du \text{ or } \frac{dx}{du} = 2u \text{ o.e.}$
	M1	Applying the substitution and achieving $\left\{ \int \right\} \frac{\pm ku}{\alpha u^2 \pm \beta u} \left\{ du \right\}$ or $\left\{ \int \right\} \frac{\pm k}{u(\alpha u^2 \pm \beta u)} \left\{ du \right\}$,
		$k, \alpha, \beta \neq 0$. Integral sign and du not required for this mark.
	М1	Cancelling u and integrates to achieve $\pm \lambda \ln(2u+5)$ or $\pm \lambda \ln\left(u+\frac{5}{2}\right)$, $\lambda \neq 0$ with no other terms.
	A1	cso. Integrates $\frac{20}{2u+5}$ to give $\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$, un-simplified or simplified.
	Note	BE CAREFUL! Candidates must be integrating $\frac{20}{2u+5}$ or equivalent.
		So $\int \frac{10}{2u+5} du = 10 \ln(2u+5)$ WOULD BE A0 and final A0.
	M1	Applies limits of 2 and 1 in u or 4 and 1 in x in their (i.e. any) changed function and subtracts the correct way round.
	A1	Exact answers of either $10\ln 9 - 10\ln 7$ or $10\ln \left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$ or $20\ln \left(\frac{3}{\sqrt{7}}\right)$ or $\ln \left(\frac{9^{10}}{7^{10}}\right)$
	Note Note	or equivalent. Correct solution only. You can ignore subsequent working which follows from a correct answer. A decimal answer of 2.513144283 (without a correct exact answer) is A0.

Question Number		Scheme	M	larks				
(a)	Area ≈	$\frac{1}{2} \times 0.5 \times \left[2 + 2(4.077 + 7.389 + 10.043) + 0 \right]$	B1;	<u>M1</u>				
	=	$\frac{1}{4} \times 45.018 = 11.2545 = 11.25(2 \text{ dp})$ 11.25	A1	cao				
(b)	:	Increase the number of strips Use more trapezia Make h smaller Increase the number of x and/or y values used Shorter /smaller intervals for x More values of y. More intervals of x Increase n	В1	[3]				
(c)	{[(2-	$(x)e^{2x} dx$, $\begin{cases} u = 2 - x \implies \frac{du}{dx} = -1 \\ \frac{dv}{dx} = e^{2x} \implies v = \frac{1}{2}e^{2x} \end{cases}$		[1]				
	$=\frac{1}{-}(2$	Either $(2-x)e^{2x} \to \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \{dx\}$ $\frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\}$ or $\pm xe^{2x} \to \pm \lambda xe^{2x} \pm \int \mu e^{2x} \{dx\}$						
	2	$\frac{1}{2}(2-x)e^{-x} - \int \frac{1}{2}e^{-x} \{dx\}$ $(2-x)e^{2x} \to \frac{1}{2}(2-x)e^{2x} - \int \frac{1}{2}e^{2x} \{dx\}$						
	$=\frac{1}{2}(2$	$-x)e^{2x} + \frac{1}{4}e^{2x}$ $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$	A1	oe				
	Area =	$\left\{ \left[\frac{1}{2} (2-x) e^{2x} + \frac{1}{4} e^{2x} \right]_{0}^{2} \right\}$						
		$\frac{1}{4}e^4 - \left(\frac{1}{2}(2)e^0 + \frac{1}{4}e^0\right)$ Applies limits of 2 and 0 to all terms and subtracts the correct way round.	dM	1				
	$=\frac{1}{4}e^4$	$-\frac{5}{4}$ $\frac{1}{4}e^4 - \frac{5}{4}$ or $\frac{e^4 - 5}{4}$ cao	A1					
				[5] 9				
		Question Notes						
(a)	B1	Outside brackets $\frac{1}{2} \times 0.5$ or $\frac{0.5}{2}$ or 0.25 or $\frac{1}{4}$.						
	M1 Note	, ,						
	A1 Note	11.25 cao Working must be seen to demonstrate the use of the trapezium rule. The actual area is 12.3	9953	751				
	Note	Award B1M1A1 for $\frac{0.5}{2}(2+0) + \frac{1}{2}(4.077 + 7.389 + 10.043) = 11.25$						

(a)		eting mistake: Unless the final answer implies that the calculation has been done correctly.							
contd	Award	ward B1M0A0 for $\frac{1}{2} \times 0.5 + 2 + 2(4.077 + 7.389 + 10.043) + 0$ (nb: answer of 45.268).							
	Altern	Alternative method for part (a): Adding individual trapezia							
		Area $\approx 0.5 \times \left[\frac{2 + 4.077}{2} + \frac{4.077 + 7.389}{2} + \frac{7.389 + 10.043}{2} + \frac{10.043 + 0}{2} \right] = 11.2545 = 11.25 \text{ (2 dp) cao}$							
	B1	0.5 and a divisor of 2 on all terms inside brackets.							
	M1	First and last ordinates once and the middle ordinates twice inside brackets ignoring the 2.							
	A1	11.25 cao							
(b)	В0	Give B0 for							
		 smaller values of x and/or y. use more decimal places 							
(c)	М1	Either $(2-x)e^{2x} \to \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \{dx\}$ or $\pm xe^{2x} \to \pm \lambda xe^{2x} \pm \int \mu e^{2x} \{dx\}$							
	A1	$(2-x)e^{2x} \rightarrow \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\}$ either un-simplified or simplified.							
	A1	Correct expression, i.e. $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$ or $\frac{5}{4}e^{2x} - xe^{2x}$ (or equivalent)							
	dM1	which is dependent on the 1 st M1 mark being awarded.							
		Complete method of applying limits of 2 and 0 to all terms and subtracting the correct way round.							
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So, just subtracting zero is M0.							
		$\frac{1}{4}e^4 - \frac{5}{4}$ or $\frac{e^4 - 5}{4}$. Do not allow $\frac{1}{4}e^4 - \frac{5}{4}e^0$ unless simplified to give $\frac{1}{4}e^4 - \frac{5}{4}$							
		12.39953751 without seeing $\frac{1}{4}e^4 - \frac{5}{4}$ is A0.							
	Note	12.39953751 from NO working is M0A0A0M0A0.							

Question Number	Scheme						
2 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	x 1 1.2 1.4 y 0 0.2625 0.659485	1.6 1.2032	1.8 1.9044	2.7726	$y = x^2 \ln x$		
(a)	$\{At \ x = 1.4,\} \ y = 0.6595 \ (4 \ dp)$				0.6595	B1 cao	
					Outside to select	[1]	
(b)	$\frac{1}{2}$ × (0.2) × $\left[0 + 2.7726 + 2\left(0.2625 + \text{the}\right)\right]$	eir 0.6595	+1.2032 +	1.9044)]	Outside brackets $\frac{1}{2}$ ×(0.2) or $\frac{1}{10}$	B1 o.e.	
(0)	{Note: The "0" does not have to be included.	ıded in []}		For structure of []	M1	
	$\left\{ = \frac{1}{10}(10.8318) \right\} = 1.08318 = 1.083 (3)$	dp)		anything t	that rounds to 1.083	A1	
	-					[3]	
(c) Way 1	$\left\{ \mathbf{I} = \int x^2 \ln x \mathrm{d}x \right\}, \begin{cases} u = \ln x \implies \frac{\mathrm{d}u}{\mathrm{d}x} = \\ \frac{\mathrm{d}v}{\mathrm{d}x} = x^2 \implies v = \end{cases}$	$\left\{\begin{array}{c} \frac{1}{x} \\ \frac{1}{3}x^3 \end{array}\right\}$					
	$= \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \left(\frac{1}{x}\right) \{\mathrm{d}x\}$				$x - \int \mu x^3 \left(\frac{1}{x}\right) \{dx\}$ $dx\}$, where $\lambda, \mu > 0$	M1	
	3 3 3 (x)			simplifi	$\int \frac{x^3}{3} \left(\frac{1}{x} \right) \{ dx \},$ fied or un-simplified	A1	
	$= \frac{x^3}{3} \ln x - \frac{x^3}{9}$		$\frac{x^3}{3} \ln x -$	$\frac{x^3}{9}$, simplifi	ied or un-simplified	A1	
	Area $(R) = \left\{ \left[\frac{x^3}{3} \ln x - \frac{x^3}{9} \right]_1^2 \right\} = \left(\frac{8}{3} \ln 2 - \frac{8}{9} \right) - \left(0 - \frac{1}{9} \right)$ dependent on the previous M mark. Applies limits of 2 and 1 and subtracts the correct way round					dM1	
	$= \frac{8}{3} \ln 2 - \frac{7}{9} \qquad \qquad \frac{8}{3} \ln 2 - \frac{7}{9} \text{or} \frac{1}{9} (24 \ln 2 - 7)$						
						[5]	
		ſ		đu.)		

(c) Way 2	$I = x^{2}(x \ln x - x) - \int 2x(x \ln x - x) dx$	$\begin{cases} u = x^2 & \Rightarrow \frac{du}{dx} = 2x \\ \frac{dv}{dx} = \ln x & \Rightarrow v = x \ln x - x \end{cases}$	
	So, $3I = x^2(x \ln x - x) + \int 2x^2 \{dx\}$		
	and $I = \frac{1}{3}x^2(x \ln x - x) + \frac{1}{3} \int 2x^2 \{dx\}$	A full method of applying $u = x^2$, $v' = \ln x$ to give $\pm \lambda x^2 (x \ln x - x) \pm \mu \int x^2 \{ dx \}$	M1
	3 3,3	$\frac{1}{3}x^{2}(x\ln x - x) + \frac{1}{3}\int 2x^{2} \left\{ dx \right\}$ simplified or un-simplified	A1
	$= \frac{1}{3}x^2(x\ln x - x) + \frac{2}{9}x^3$	$\frac{x^3}{3} \ln x - \frac{x^3}{9}$, simplified or un-simplified	A1
		Then award dM1A1 in the same way as above	M1 A1
			[5] 9

*en 194		Question Notes						
(a)	Bl	0.6595 correct answer only. Look for this on the table or in the candidate's working.						
(b)	Bl	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.						
	Ml	For structure of trapezium rule						
	Note	No errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y ordinate].						
	Al Note	te Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.070614704)						
	Note							
	Note	Award B1M1A1 for $\frac{1}{10}(2.7726) + \frac{1}{5}(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) = \text{awrt } 1.083$						
	Brack	eting mistake: Unless the final answer implies that the calculation has been done correctly						
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) + 2.7726$ (answer of 10.9318)						
	Award	B1M0A0 for $\frac{1}{2}$ (0.2)(2.7726) + 2(0.2625 + their 0.6595 + 1.2032 + 1.9044) (answer of 8.33646)						
	Altern	ative method: Adding individual trapezia						
		$0.2 \times \left[\frac{0 + 0.2625}{2} + \frac{0.2625 + "0.6595"}{2} + \frac{"0.6595" + 1.2032}{2} + \frac{1.2032 + 1.9044}{2} + \frac{1.9044 + 2.7726}{2} \right] = 1.08318$						
	Bl	0.2 and a divisor of 2 on all terms inside brackets						
	Ml	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2						
	Al	anything that rounds to 1.083						
(c)	A1	Exact answer needs to be a two term expression in the form $a \ln b + c$						
	Note	Give A1 e.g. $\frac{8}{3}\ln 2 - \frac{7}{9}$ or $\frac{1}{9}(24\ln 2 - 7)$ or $\frac{4}{3}\ln 4 - \frac{7}{9}$ or $\frac{1}{3}\ln 256 - \frac{7}{9}$ or $-\frac{7}{9} + \frac{8}{3}\ln 2$						
		or $\ln 2^{\frac{8}{3}} - \frac{7}{9}$ or equivalent.						
	Note	Give final A0 for a final answer of $\frac{8 \ln 2 - \ln 1}{3} - \frac{7}{9}$ or $\frac{8 \ln 2}{3} - \frac{1}{3} \ln 1 - \frac{7}{9}$ or $\frac{8 \ln 2}{3} - \frac{8}{9} + \frac{1}{9}$						
		or $\frac{8}{3} \ln 2 - \frac{7}{9} + c$						
	Note	$\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2$ followed by awrt 1.07 with no correct answer seen is dM1A0						
	Note	Give dM0A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \frac{1}{9}$ (adding rather than subtracting)						
	Note	Allow dM1A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \left(0 + \frac{1}{9}\right)$						
	SC	A candidate who uses $u = \ln x$ and $\frac{dv}{dx} = x^2$, $\frac{du}{dx} = \frac{\alpha}{x}$, $v = \beta x^3$, writes down the correct "by parts"						
		formula but makes only one error when applying it can be awarded Special Case 1st M1.						

Question Number	Scheme					No	otes	Marks
	x 0 y 2	0.2 1.8625426	0.4 1.71830	0.6 1.56981	0.8 1.41994	1.27165	$y = \frac{6}{(2 + e^x)}$	
(a)	${At x = 0.2,}$	y = 1.86254 (5 dp))				1.86254	B1 cao
		Note: Look for this value on the given table or in their working.					[1]	
						Outside	brackets $\frac{1}{2} \times (0.2)$	B1 o.e.
(b)	$\frac{1}{2}$ (0.2)[2+1.27	165+2(their 1.862	54 + 1.71830	0 + 1.56981	+ 1.41994)		or $\frac{1}{10}$ or $\frac{1}{2} \times \frac{1}{5}$	B1 0.c.
	For structure of []						M1	
	$= \frac{1}{10} (16.412)$	83) = 1.641283	=1.6413 (4	dp)		anything tha	at rounds to 1.6413	A1
								[3]
(c)	$\left\{ u=\mathrm{e}^x \text{ or } x=\right.$	$= \ln u \Rightarrow $						
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^x \text{ or } \frac{\mathrm{d}u}{\mathrm{d}x}$	$\frac{d}{dx} = u \text{ or } \frac{dx}{du} = \frac{1}{u}$	or $du = u$	etc., an	$d \int \frac{6}{(e^x +$	$\frac{1}{(2)} dx = \int \frac{1}{(u)^2}$	$\frac{6}{(+2)u} du$ See notes	B1 *
	$\{x=0\} \Rightarrow a=$	$= e^0 \Rightarrow \underline{a} = 1$				a=1 a	$nd b = e or b = e^1$	B1
	$\{x=1\} \Rightarrow b=e^1 \Rightarrow \underline{b}=\underline{e}$ or evidence of $0 \to 1$ and $1 \to e$							21
	1	NOTE: 1 st B1 m	ark CANN	OT be reco	vered for	r work in par	t (d)	[2]
		NOTE: 2 nd B1	mark CAl	N be recove	red for v	vork in part (d)	

	T				
(d) Way 1	$\frac{6}{u(u+2)} \equiv \frac{A}{u} + \frac{B}{(u+2)}$ $\Rightarrow 6 \equiv A(u+2) + Bu$	Writing $\frac{6}{u(u+2)} = \frac{A}{u} + \frac{B}{(u+2)}$, o.e. or $\frac{1}{u(u+2)} = \frac{P}{u} + \frac{Q}{(u+2)}$, o.e., and a complete method for finding the value of at least one of their A or their B (or their P or their Q)			M1
	$u = 0 \Rightarrow A = 3$ $u = -2 \Rightarrow B = -3$	Both their $A=3$ and their $B=-3$. (Or their $P=\frac{1}{2}$ and their $Q=-\frac{1}{2}$ with the factor of 6 in front of the integral sign)			
	$\int \frac{6}{u(u+2)} du = \int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ $= 3\ln u - 3\ln(u+2)$ or $= 3\ln 2u - 3\ln(2u+4)$ $\left\{ \text{So} \left[3\ln u - 3\ln(u+2) \right]_{1}^{c} \right\}$ $= \left(3\ln(e) - 3\ln(e+2) \right) - \left(3\ln 1 - 3\ln 3 \right)$ [Note: A proper consideration of the limit of $u = 1$ is required for this mark]		Integrates $\frac{M}{u} \pm \frac{N}{u \pm k}$, $M, N, k \neq 0$; (i.e. a two term partial fraction) to obtain either $\pm \lambda \ln(\alpha u)$ or $\pm \mu \ln(\beta(u \pm k))$; $\lambda, \mu, \alpha, \beta \neq 0$		M1
			Integration of both terms is correctly following from their M and f		A1 ft
			dependent on the 2^{nd} M mark Applies limits of e and 1 (or their b and their a, where $b > 0$, $b \ne 1$, $a > 0$) in u or applies limits of 1 and 0 in x and subtracts the correct way round.		dM1
	$= 3 - 3\ln(e+2) + 3\ln 3 \text{ or } 3(1 - \ln(e+2) + \ln 3) \text{ or } 3 + 3\ln\left(\frac{3}{e+2}\right)$ or $3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right)$ or $3 - 3\ln\left(\frac{e+2}{3}\right)$ or $3\ln\left(\frac{3e}{e+2}\right)$ or $\ln\left(\frac{27e^3}{(e+2)^3}\right)$				A1 cso
	Note: Allow e1 in place of e for the final A1 mark.				
	Note: Give final A0 for 3-3lnc+2+3ln3 (i.e. bracketing error) unless recovered.				12
	Note: Give final A0 for $3-3\ln(e+2)+3\ln 3-3\ln 1$, where $3\ln 1$ has not been simplified to 0				
	Note: Give final A0 for $3\ln e - 3\ln(e+2) + 3\ln 3$, where $3\ln e$ has not been simplified to 3				

	1	Ouestion Notes				
(I-)						
(b)	Note	M1: Do not allow an extra y-value or a repeated y value in their []				
		Do not allow an omission of a y-ordinate in their [] for M1 unless they give the correct answer				
		awrt 1.6413, in which case both M1 and A1 can be scored.				
	Note	1				
		(Actual area is 1.64150274)				
	Note	Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)				
	Note	Award B1M1A1 for				
		1				
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1.6413$				
	Bracketing mistakes: Unless the final answer implies that the calculation has been done correctly					
		· · · · · · · · · · · · · · · · · · ·				
	Award	Award B1M0A0 for $\frac{1}{2}$ (0.2) + 2 + 2(their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=16.51283)				
	Award	B1M0A0 for $\frac{1}{2}$ (0.2)(2 + 1.27165) + 2(their 1.86254 + 1.71830 + 1.56981 + 1.41994) (=13.468345)				
	Award :	B1M0A0 for $\frac{1}{2}$ (0.2)(2) + 2(their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=14.61283)				
	Alterna	ntive method: Adding individual trapezia				
	Area $\approx 0.2 \times \left[\frac{2 + \text{"}1.86254\text{"}}{2} + \frac{\text{"}1.86254\text{"} + 1.71830}{2} + \frac{1.71830 + 1.56981}{2} + \frac{1.56981 + 1.41994}{2} + \frac{1.41994 + 1.27165}{2} \right]$					
	= 1.641283					
	B1	0.2 and a divisor of 2 on all terms inside brackets				
	MI	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2				
		anything that rounds to 1.6413				
	Al	anyming macrounds to 1.0415				

(-)	ast ma	Must start from either			
(c)	1st B1	Must start from either			
		• $\int y dx$, with integral sign and dx			
		• $\int \frac{6}{(e^x + 2)} dx$, with integral sign and dx			
		• $\int \frac{6}{(e^x + 2)} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$			
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$			
		and end at $\int \frac{6}{u(u+2)} du$, with integral sign and du , with no incorrect working.			
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\int \frac{6}{(e^x + 2)} dx = \int \frac{6}{u(u + 2)} du$ is sufficient for 1 st B1			
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e^1$			
	Note	You can also give the 1st B1 mark for using a reverse process. i.e.			
		Proceeding from $\int \frac{6}{u(u+2)} du$ to $\int \frac{6}{(e^x+2)} dx$, with no incorrect working,			
		and stating either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$			
(d)	Note	Give final A0 for $3-3\ln(e+2)+3\ln 3$ simplifying to $1-\ln(e+2)+\ln 3$			
		(i.e. dividing their correct final answer by 3)			
		Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.			
	Note	A decimal answer of 1.641502724 (without a correct exact answer) is final A0			
	Note	$\left[-3\ln(u+2)+3\ln u\right]_1^e$ followed by awrt 1.64 (without a correct exact answer) is final M1A0			

		Question Notes Continued				
(d)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.				
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1 st M1				
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.				
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.				
	Note	Award M0A0M1Alft for a candidate who writes down				
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6 \ln u + 6 \ln(u+2)$				
		AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.				
	Note	Award M0A0M0A0 for a candidate who writes down				
		$\int \frac{6}{u(u+2)} du = 6 \ln u + 6 \ln(u+2) \text{ or } \int \frac{6}{u(u+2)} du = \ln u + 6 \ln(u+2)$				
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.				
	Note	Award M1A1M1A1 for a candidate who writes down				
		$\int \frac{6}{u(u+2)} \mathrm{d}u = 3\ln u - 3\ln(u+2)$				
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.				
	Note	If they lose the "6" and find $\int_{1}^{e} \frac{1}{u(u+2)} du$ we can allow a maximum of M1A0M1A1ftM1A0				

	Question Notes Continued					
(d) Way 2	$\left\{ \int \frac{6}{u^2 + 2u} du = \int \frac{3(2u + 2)}{u^2 + 2u} du - \int \frac{6u}{u^2 + 2u} du \right\}$					
	$= \int \frac{3(2u+2)}{u^2+2u} du - \int \frac{6}{u+2} du$	$\int \frac{\pm a}{i}$	$\int \frac{\pm \alpha (2u+2)}{u^2+2u} \left\{ du \right\} \pm \int \frac{\delta}{u+2} \left\{ du \right\}, \ \alpha, \beta, \delta \neq 0$			M1
	J u + 2u J u + 2		Correct expression			
	Integrates $\frac{\pm M(2u+2)}{u^2+2u}\pm \frac{N}{u\pm k}$, $M,N,k\neq 0$, to obtain any one of $\pm \lambda \ln(u^2+2u)$ or $\pm \mu \ln(\beta(u\pm k))$; $\lambda,\mu,\beta\neq 0$ Integration of both terms is correctly followed through from their M and from their N				M1	
					\mathbf{rom} their N	A1 ft
	$\begin{cases} \text{So,} \left[3\ln(u^2 + 2u) - 6\ln(u + 2) \right] \\ = \left(3\ln(e^2 + 2e) - 6\ln(e + 2) \right) - 6\ln(e + 2) \end{cases}$	dependent on the 2^{nd} M mark Applies limits of e and 1 (or their b and their a, where $b > 0, b \ne 1, a > 0$) in u or applies limits of 1 and 0 in x and subtracts the correct way round.		dM1		
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) + 31$	ln 3	$3\ln(e^2 + 2e) - 6\ln(e + 2) + 3\ln 3$		A1 o.e.	
					[6]	
(d)	Applying $u = \theta - 1$					
Way 3	$\left\{ \int_{1}^{\bullet} \frac{6}{u(u+2)} du = \right\} \int_{2}^{1+\bullet} \frac{6}{(\theta-1)(\theta+1)} d\theta = \int_{2}^{1+\bullet} \frac{6}{\theta^2 - 1} du = \left[3 \ln \left(\frac{\theta - 1}{\theta + 1} \right) \right]_{2}^{1+\bullet}$			M1A1M1A1		
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-1}{2+1}\right)$	$= 3\ln\left(\frac{e}{e+2}\right) -$	$3\ln\left(\frac{1}{3}\right)$	3 rd M mark i on	s dependent 2 nd M mark	dM1A1
						[6]