

Trapezium Rule - Edexcel Past Exam Questions MARK SCHEME

Question 1: June 05 Q5

Question Number	Scheme	Marks
	(a) $\int x e^{2x} dx = \frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx$ Attempting parts in the right direction $= \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x}$ $\left[\frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x}\right]_{0}^{1} = \frac{1}{4} + \frac{1}{4} e^{2}$ (b) $x = 0.4 \implies y \approx 0.89022$ $x = 0.8 \implies y \approx 3.96243$ Both are required to 5 d.p	• M1 A1 A1 • M1 A1 (5) B1
	(c) $I \approx \frac{1}{2} \times 0.2 \times []$ $\approx \times [0+7.38906+2(0.29836+.89022+1.99207+3.96243)]$ ft their answers to (b) $\approx 0.1 \times 21.67522$ ≈ 2.168 Note $\frac{1}{4} + \frac{1}{4}e^2 \approx 2.097$	(1) B1 M1 A1ft A1 (4) [10]

2. (a)	x y M1 for one c	0 1 orrect, A1 for	$\frac{\pi}{16}$ 1.01959	<u>π</u> 8 1.08239	$\frac{3\pi}{16}$ 1.20269	$\frac{\pi}{4}$ 1.41421	M1 A	1 (2)
(b)	Integral = $\frac{1}{2}$ ×	$<\frac{\pi}{16} \times \{1+1.41\}$))}		M1 A1 A1 cae	
(c)			$\frac{x - 0.88137}{88137} \times 10^{10}$ $\frac{rox - \ln(1 + \sqrt{2})}{\ln(1 + \sqrt{2})}$		o (allow 0.5%)	to 0.54% for A1)	M1 A1	(2) [7]

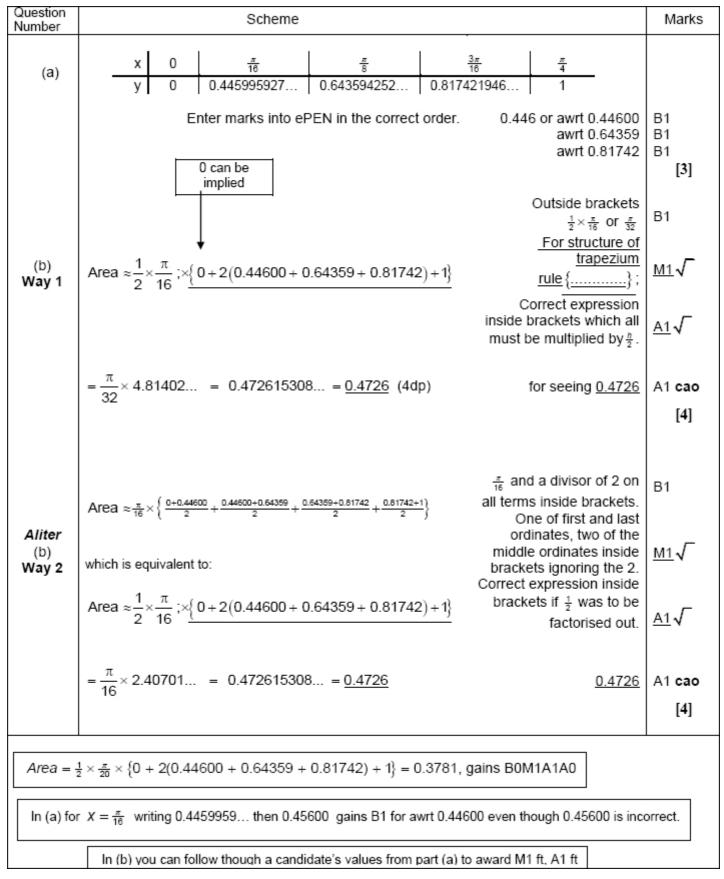
Question 3: Jan 07 Q8

Question Number			Scheme					Marks
(a)	x y or y	0 e ¹ 2.71828	1 e ² 7.38906	2 e ^{√7} 14.09403	3 e ^{√10} 23.62434		5 e ⁴ 54.59815	
					(0	or awrt 14 o awrt r mixture of de <i>At l</i>	, $e^{\sqrt{10}}$ and $e^{\sqrt{10}}$.1, 23.6 and 3 r e to the pow 2.65, 3.16, 3. ecimals and e <i>east</i> two correction All three correction	6.8 ver 61 's) ect B1
(b)	I≈ <mark>1</mark> ×1	$I;\times \left\{ e^{1}+2\left(e^{2}\right) \right\}$	$+ e^{\sqrt{7}} + e^{\sqrt{10}}$	$+ e^{\sqrt{13}} + e^4 $		For structu	brackets $\frac{1}{2}$ > tre of trapeziu rule {	
	$=\frac{1}{2}\times 2$	221.1352227.	= 110.56	676113 = <u>1</u> 1	1 <u>0.6</u> (4sf)		<u>110</u>).6 A1 cao
Question Number			Scheme					Marks
(c)	t = (3x or	$(+1)^{\frac{1}{2}} \Rightarrow \frac{dt}{dx}$ $t^{2} = 3x + 1 =$	$= \frac{1}{2} \cdot 3 \cdot (3x + \frac{1}{2}) \cdot 3 \cdot (3x + \frac{1}{2})$	1) ⁻¹ /2		$A(3x+1)^{-\frac{1}{2}}$ $\frac{\frac{3}{2}(3x+1)^{-\frac{1}{2}}}{3} o(3x+1)^{-\frac{1}{2}}$		M1 A1
	so $\frac{dt}{dx}$ =	$=\frac{3}{2.(3x+1)^{\frac{1}{2}}}$	$=\frac{3}{2t}$ $\Rightarrow \frac{dt}{dt}$	$\frac{x}{t} = \frac{2t}{3}$		Candidate of $\frac{dt}{dx}$ or $\frac{dx}{dt}$ in t	btains either erms of t	
	∴ I = ∫	$e^{\sqrt{(3x+1)}} dx =$	$\int e^t \frac{dx}{dt} dt =$	=∫e ^t .2t/3.dt		substitute convert an ir	moves on to this into I to ntegral wrt x ntegral wrt t.	dM1
	∴ I = <u>∫</u>	$\frac{2}{3}$ te ^t dt					$\int \frac{2}{3} t e^{t}$	A1
		x = 0, t = 1				-	hits $x \rightarrow t$ so and $5 \rightarrow 4$	B1
	Hence	$I = \int_{1}^{4} \frac{2}{3} t e^{t} dt$; where a = 1,	b = 4, k = $\frac{2}{3}$				[5]

Trap	ezium	Rul	e
· · ~ – – –			-

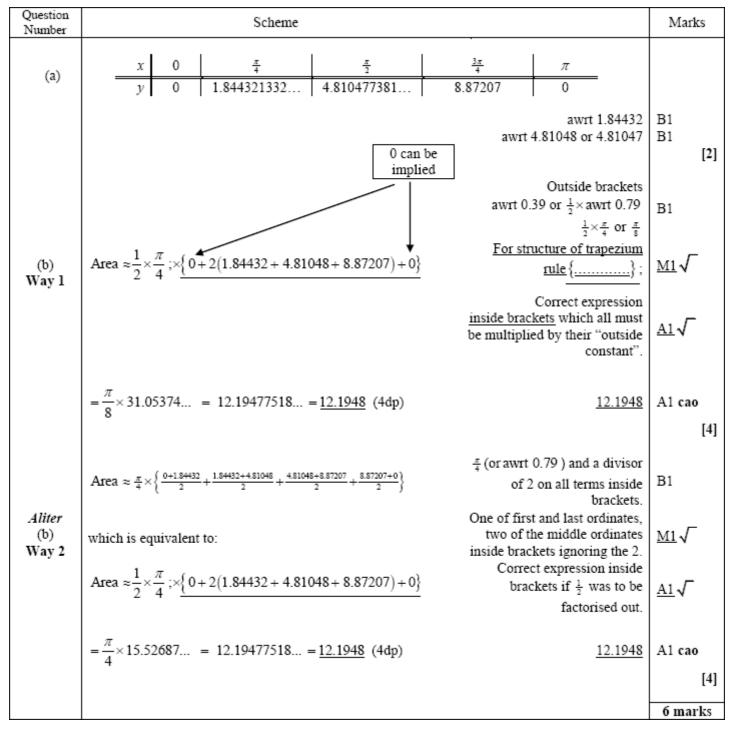
Fremiste		1	
(d)	$ \begin{cases} u = t \implies \frac{du}{dt} = 1 \\ \frac{dv}{dt} = e^t \implies v = e^t \end{cases} $	Let k be any constant for the first three marks of this part.	
	$k\int t e^t dt = k \left(t e^t - \int e^t . 1 dt \right)$	Use of 'integration by parts' formula in the correct direction. Correct expression with a constant factor k.	M1 A1
	$= \mathbf{k} \left(\underline{\mathbf{t} \mathbf{e}^{t} - \mathbf{e}^{t}} \right) + \mathbf{c}$	<u>Correct integration</u> with/without a constant factor k	A1
	$\therefore \int_{1}^{4} \frac{2}{3} t e^{t} dt = \frac{2}{3} \left\{ \left(4e^{4} - e^{4} \right) - \left(e^{1} - e^{1} \right) \right\}$	Substitutes their changed limits into the integrand and subtracts oe.	dM1 oe
	$=\frac{2}{3}(3e^4)=\underline{2e^4}=109.1963$	either 2e ⁴ or awrt 109.2	A1 [5] 15 marks

 (π)



Question 4: June 06 Q6

Question Number			Scheme					Marks
(a)								
(,	x	1	1.5	2	2.5	3		
	у	0	0.5 ln 1.5	In 2	1.5 ln 2.5	2 ln 3		
	or y	0	0.2027325541	ln2	1.374436098.	. 2 In 3		
						or a	.5 and 1.5 ln 2.5 wrt 0.20 and 1.37 decimals and ln's)	B1 [1]
(b)(i)	$I_1 \approx \frac{1}{2} \times 1 \times 1$	{0+2(ln 2	2) + 2ln 3}			<u>For stru</u>	<u>cture of trapezium</u> <u>rule</u> {};	M1;
	$=\frac{1}{2}\times 3$.58351893	38 = 1.791759	9 = 1.79	2 (4sf)		1.792	A1 cao
(ii)	$I_2 \approx \frac{1}{2} \times 0.5$	5;× $\{0+2\}$	(0.5ln1.5 + ln 2 + 1	.5ln2.5)+	2ln3}		brackets $\frac{1}{2} \times 0.5$ <u>cture of trapezium</u> <u>rule {};</u>	B1; M1√
	$=\frac{1}{4}\times 6$	6.7378562	242 = 1.68446	4			awrt 1.684	A1 [5]
(c)			inates, <u>the line se</u> are closer to the cl				propriate diagram ne correct reason.	B1 [1]



Question 5: June 07 Q7

Question 6: Jan 08 Q1

Note an expression like Area $\approx \frac{1}{2} \times \frac{\pi}{4} + 2(1.84432 + 4.81048 + 8.87207)$ would score B1M1A0A0

Question 7: June 08 Q1

Question Number		Scheme					
(a)	$\begin{array}{c c} x & 0 \\ \hline y & e^0 \\ \hline or y & 1 \end{array}$	0.4 e ^{0.08} 1.08329	0.8 e ^{0.32} 1.37713	1.2 e ^{0.72} 2.05443	1.6 e ¹²⁸ 3.59664	2 e ² 7.38906	B1 (1)
(b)	Area $\approx \frac{1}{2} \times 0.4$	$f:\times \left[e^{0}+2\left(e^{0}\right)\right]$	$e^{0.08} + e^{0.32} + e^{0.032}$	$(1.72 + e^{1.28}) + e^{1.28}$	2]		B1; M1
	= 0.2×24.612	203164 =	4.922406 =	= <u>4.922</u> (4sf)			A1 (3)
							(4 marks)

Question 8: June 09 Q2

	stion nber	Scheme		Mar	ks
Q	(a)	1.14805	awrt 1.14805	B1	(1)
	(b)	$A \approx \frac{1}{2} \times \frac{3\pi}{8} (\dots)$		B1	
		$= \dots \left(3 + 2(2.77164 + 2.12132 + 1.14805) + 0\right)$	0 can be implied	M1	
		$= \frac{3\pi}{16} (3 + 2(2.77164 + 2.12132 + 1.14805))$	ft their (a)	A1ft	
		$=\frac{3\pi}{16} \times 15.08202 \dots = 8.884$	cao	A1	(4)
	(c)	$\int 3\cos\left(\frac{x}{3}\right) dx = \frac{3\sin\left(\frac{x}{3}\right)}{\frac{1}{3}}$		M1 A1	
		$=9\sin\left(\frac{x}{3}\right)$			
		$A = \left[9\sin\left(\frac{x}{3}\right)\right]_{0}^{\frac{3\pi}{2}} = 9 - 0 = 9$	cao	A1	(3)
					[8]

Question 9: Jan 10 Q2

Question Number	Scheme	Mark	s
	(a) 1.386, 2.291 awrt 1.386, 2.291	B1 B1	<mark>(</mark> 2)
	(b) $A \approx \frac{1}{2} \times 0.5 ()$	B 1	
	$= \dots \left(0 + 2(0.608 + 1.386 + 2.291 + 3.296 + 4.385) + 5.545 \right)$	M1	
	= 0.25(0+2(0.608+1.386+2.291+3.296+4.385)+5.545) ft their (a)	A1ft	
	= 0.25×29.477 ≈ 7.37 cao	A1	(4)
	(c)(i) $\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \times \frac{1}{x} dx$ = $\frac{x^2}{2} \ln x - \int \frac{x}{2} dx$	_ M1 A1	
	$=\frac{x^2}{2}\ln x - \frac{x^2}{4}(+C)$	M1 A1	
	(ii) $\left[\frac{x^2}{2}\ln x - \frac{x^2}{4}\right]_1^4 = (8\ln 4 - 4) - \left(-\frac{1}{4}\right)$	M1	
	$= 8 \ln 4 - \frac{15}{4}$		
	$= 8(2\ln 2) - \frac{15}{4}$ ln 4 = 2 ln 2 seen or implied	M1	
	$=\frac{1}{4}(64\ln 2 - 15)$ $a = 64, b = -15$	A1	(7)
	4		[13]

Question 10: June 10 Q1

Question Number		Scheme		Mark	S
	(a) $y\left(\frac{\pi}{6}\right)$	$\gg 1.2247, y\left(\frac{\pi}{4}\right) = 1.1180$	accept awrt 4 d.p.	B1 B1	(2)
	(b)(i) $I \approx \left(\frac{\pi}{12} \times 12^{-3}\right)$	$\left(\frac{1}{2}\right)(1.3229 + 2 \times 1.2247 + 1)$	B1 for $\frac{\pi}{12}$ cao	B1 M1 A1	
	(ii) $I \approx \left(\frac{\pi}{24}\right) (1.3229)$ ≈ 1.257	9+2×(1.2973+1.2247+1.1180)	+1) B1 for $\frac{\pi}{24}$ cao	B1 M1 A1	(6) [8]

Question 11: Jan 11 Q7

Question Number	Scheme		Marks
(a)	$x = 3 \implies y = 0.1847$ $x = 5 \implies y = 0.1667$	awrt awrt or $\frac{1}{6}$	B1 B1 (2)
(b)	$I \approx \frac{1}{\underline{2}} \Big[0.2 + 0.1667 + 2(0.1847 + 0.1745) \Big] \\\approx 0.543$	0.542 or 0.543	<u>B1</u> M1 A1ft A1 (4)
(c)	$\frac{\mathrm{d}x}{\mathrm{d}u} = 2\left(u - 4\right)$		B1
	$\int \frac{1}{4+\sqrt{(x-1)}} \mathrm{d}x = \int \frac{1}{u} \times 2(u-4) \mathrm{d}u$		M1
	$=\int \left(2-\frac{8}{u}\right) du$		A1
	$= 2u - 8 \ln u$ $x = 2 \implies u = 5, x = 5 \implies u = 6$		M1 A1 B1
	$\left[2u - 8\ln u\right]_{5}^{6} = (12 - 8\ln 6) - (10 - 8\ln 5)$		M1
	$=2+8\ln\left(\frac{5}{6}\right)$		A1
			(8) [14]

Question 12: June 11 Q4

Question Number	Scheme		Mark	CS
	(a) 0.0333, 1.3596 awrt 0.0333, 1.3596		B1 B1	(2)
	(b) Area $(R) \approx \frac{1}{2} \times \frac{\sqrt{2}}{4} []$		B1	
	$\approx \dots \left[0 + 2(0.0333 + 0.3240 + 1.3596) + 3.9210\right]$		M1	
	≈1.30 Acce	pt	A1	(3
	(c) $u = x^2 + 2 \implies \frac{\mathrm{d}u}{\mathrm{d}x} = 2x$		B1	
	Area $(R) = \int_{0}^{\sqrt{2}} x^{3} \ln(x^{2} + 2) dx$		B1	
	$\int x^3 \ln (x^2 + 2) dx = \int x^2 \ln (x^2 + 2) x dx = \int (u - 2) (\ln u) \frac{1}{2} du$		M1	
	Hence Area $(R) = \frac{1}{2} \int_{2}^{4} (u-2) \ln u du \neq$ cso		A1	(4
	(d) $\int (u-2)\ln u du = \left(\frac{u^2}{2} - 2u\right)\ln u - \int \left(\frac{u^2}{2} - 2u\right)\frac{1}{u} du$	Г	M1 A1	
	$= \left(\frac{u^2}{2} - 2u\right) \ln u - \int \left(\frac{u}{2} - 2\right) du$ $= \left(\frac{u^2}{2} - 2u\right) \ln u - \left(\frac{u^2}{4} - 2u\right) (+C)$	_	M1 A1	
	Area $(R) = \frac{1}{2} \left[\left(\frac{u^2}{2} - 2u \right) \ln u - \left(\frac{u^2}{4} - 2u \right) \right]_2^4$			
	$=\frac{1}{2}\left[(8-8)\ln 4 - 4 + 8 - ((2-4)\ln 2 - 1 + 4)\right]$		M1	
	$=\frac{1}{2}(2\ln 2+1)$ ln 2	$2 + \frac{1}{2}$	A1	(6
				1