

End of Year 12 AS Pure & Applied - Homework 1 (2 hr) MARK SCHEME

Section A: Pure Mathematics

Question Number	Scheme	Marks
(a)	Area of triangle = $\frac{1}{2}ab\sin C' = \frac{1}{2} \times 2x \times 2x \times \sin 60 = \sqrt{3}x^2$	М1
	$S = 2 \times \sqrt{3}x^2 + 3 \times 2xl = 2x^2\sqrt{3} + 6xl$	dM1A1* (3)
(b)	$960 = 2x^2\sqrt{3} + 6xl \Rightarrow l = \frac{960 - 2x^2\sqrt{3}}{6x}$	MIAI
	$V = x^2 \sqrt{3} l$	B1
	Substitute $l = \frac{960 - 2x^2\sqrt{3}}{6x}$ into $V = x^2\sqrt{3} l$	
	$\Rightarrow V = x^2 \sqrt{3} \times \left(\frac{960 - 2x^2 \sqrt{3}}{6x}\right) = 160x\sqrt{3} - x^3$	dM1A1*
		(5)
(c)	$\frac{dV}{dx} = 160\sqrt{3} - 3x^2 = 0$	M1A1
	$\Rightarrow x = awrt 9.6$	A1
	$\Rightarrow V = 160 \times 9.611 \times \sqrt{3} - 9.611^3 = 1776$	dM1 A1
		(5)
(d)	$\frac{d^2 V}{dx^2} = -6x < 0 \Longrightarrow Maximum$	M1A1
		(2)
		(15 marks)

Question Number	Scheme	Marks
(a)	Sub $x = 3$ in $y = x^2 - \frac{1}{3}x^3 = 9 - 9 = 0$	B1*
		(1)
(b)	$y = x^2 - \frac{1}{3}x^3 \Longrightarrow \frac{dy}{dx} = 2x - x^2$	M1A1
	Subs $x = 3$ in $\frac{dy}{dx} = 2x - x^2 = 6 - 9 = (-3)$	dM1
	Equation of tangent is $-3 = \frac{y-0}{x-3} \Rightarrow y = -3x+9$	ddM1A1*
		(5)
(c)	Sets $x^2 - \frac{1}{3}x^3 = -3x + 9 \Rightarrow x^3 - 3x^2 - 9x + 27 = 0$ oe	M1, A1
	Solves $x^3 - 3x^2 - 9x + 27 = 0 \Rightarrow (x - 3)^2 (x + 3) = 0 \Rightarrow x = -3$	dM1, A1
		(4)
(d)	Area under curve = $\int x^2 - \frac{1}{3}x^3 dx = \left[\frac{1}{3}x^3 - \frac{1}{12}x^4\right]$	M1A1
	Area of triangle = $\frac{1}{2} \times (3 - x_B) \times y_B = (54)$	M1
	Shaded area = Triangle - area under curve =	
	$^{1}54' - \left(\left(\frac{1}{3} \times 3^{3} - \frac{1}{12} \times 3^{4} \right) - \left(\frac{1}{3} \times (-3)^{3} - \frac{1}{12} \times (-3)^{4} \right) \right) = 36$	dM1A1
		(5) (15 marks)
e	Alternative to (d) by integration	
	Area = $\int_{x=-3}^{x=-3} (-3x+9) - \left(x^2 - \frac{1}{3}x^3\right) dx$ Either way	
	around	
	$\left[-3\frac{x^2}{2}+9x-\frac{1}{3}x^3+\frac{1}{3}\frac{x^4}{4}\right]_{x=-3}^{x=3}$	
	$= \left(-3 \times \frac{3^2}{2} + 9 \times 3 - \frac{1}{3} \times 3^3 + \frac{1}{3} \times \frac{3^4}{4}\right) - \left(-3 \times \frac{(-3)^2}{2} + 9 \times (-3) - \frac{1}{3} \times (-3)^3 + \frac{1}{3} \times \frac{(-3)^4}{4}\right)$	
	=36	

Question Number	Scheme	Marks
(a)	Uses $1 - \sin^2 x = \cos^2 x$	M1
	$\frac{\cos^2 x - \sin^2 x}{1 - \sin^2 x} = \frac{\cos^2 x - \sin^2 x}{\cos^2 x} = 1 - \frac{\sin^2 x}{\cos^2 x} = 1 - \tan^2 x$	A1*
(b)	$\frac{\cos^2 x - \sin^2 x}{1 - \sin^2 x} + 2 = 0 \Longrightarrow 1 - \tan^2 x + 2 = 0$	M1
	$\tan^2 x = 3$	A1
	$\tan x = (\pm)\sqrt{3} \Longrightarrow x = \dots$	dM1
	$x = \frac{1}{3} \frac{60^{\circ}}{3}, \frac{120^{\circ}}{3}, \frac{240^{\circ}}{3}, \frac{300^{\circ}}{3}$	A1,A1

Scheme	Marks
$h = 3.7 + 2.5\cos(30t - 40)^\circ, \qquad 0 \le t < 24$	
Max = 3.7+2.5=6.2m	B1
Occurs when $30t - 40 = 0 \Rightarrow t = \frac{40}{30}, = 1:20am(01:20)$	M1A1,A1
	(4)
$3.7 + 2.5\cos(30t - 40)^\circ = 3 \Rightarrow \cos(30t - 40)^\circ = -\frac{0.7}{2.5} = (-0.28)$	M1
30t - 40 = 106.3, (253.7)	A1
t = awrt 4.9 or 9.8	A1
2^{nd} Value $30t - 40 = 253.7 \Longrightarrow t =$	M1
t = awrt 4.9 and 9.8	A1
Boat cannot enter the harbour between 04:53 and 09:47	A1 (6) (10 marks)
	$h = 3.7 + 2.5 \cos(30t - 40)^{\circ}, 0 \le t < 24$ Max = 3.7+2.5=6.2m Occurs when $30t - 40 = 0 \Rightarrow t = \frac{40}{30}, = 1:20am(01:20)$ $3.7 + 2.5 \cos(30t - 40)^{\circ} = 3 \Rightarrow \cos(30t - 40)^{\circ} = -\frac{0.7}{2.5} = (-0.28)$ 30t - 40 = 106.3, (253.7) t = awrt 4.9 or 9.8 2^{nd} Value $30t - 40 = 253.7 \Rightarrow t =$ t = awrt 4.9 and 9.8

$$2\log_{2} x + \log_{2} (x-i) - \log_{2} (5x+i) = 1$$

$$\log_{2} x^{2} + \log_{2} (x-i) - \log_{2} (5x+i) = \log_{2} 2 (1 \text{ into } \log_{2} 2)$$

$$\log_{2} x^{2} (x-i) - \log_{3} (5x+i) = \log_{3} 2 \left[\log_{3} a = 1\right]$$

$$\Rightarrow \log_{2} \left[\frac{x^{1}(x-i)}{5x+i}\right] = \log_{3} 2$$

$$\Rightarrow \frac{x^{3}-x^{1}}{5x+i} = 2$$

$$\Rightarrow x^{3}-x^{2} = 10x+8$$

$$\Rightarrow By \text{ inspection } (x+i) \text{ is a factor}$$

$$\Rightarrow x^{2} (x+i) - 2x(x+i) - 8(x+i) = 0$$

$$\Rightarrow (x+i) (x^{2}-2x-8) = 0$$

$$(x+i) \text{ cavit be a solution of the log equation}$$

$$= \frac{1}{2} (x+i) (x-i) = 0$$

$$x = \frac{1}{2} (x+i) = 0$$

Section B: Statistics

Question 6

Question	Scheme	Marl	KS .
(a)	Width = $\frac{5}{3} \times 1.5 = 2.5$ (cm)	B1	
	Area = $6 \times 1.5 = 9$ cm ² has frequency = 12 so 1.5 cm ² = 2 people (o.e.) Frequency of 10 corresponds to area of 7.5 so height = <u>3 (cm)</u>	M1 A1	(3)
(b)	$Q_2 = [2.5+] \frac{(25/25.5-16)}{12} \times 3 = 4.75$ (or 4.875 if use $n+1$) awrt <u>4.75</u>	M1 A1	
			(2)
(c)(i)	$\begin{bmatrix} \overline{x} = \end{bmatrix} \frac{394}{50} = 7.88 (*)$ $\begin{bmatrix} \sigma_x = \end{bmatrix} \sqrt{\frac{6500}{50} - \overline{x}^2} = \sqrt{67.9056}$	Blcso	
(ii)	$[\sigma_x =] \sqrt{\frac{6500}{50} - \overline{x}^2} = \sqrt{67.9056}$	M1A1	
	$= \underline{\text{awrt 8.24}} (\text{Accept } s = \text{awrt 8.32})$	A1	(4)
(d) (i)	There is no effect on the mean	B1	
(ii)	The median will increase	B1	
(iii)	The standard deviation will decrease	B1	(3)

Question	Question Scheme		Marks	
(a)	$P(S) = 0.31 + p$, $P(D) = 0.35$, $P(S \cap D) = 0.14$	M1		
	(0.31 + p)(0.35) = 0.14 oe	M1		
	P(S) = 0.4 or 0.31 + p = 0.4 or 0.35p = 0.0315	A1		
	p = 0.09	A1		
			(4)	
(b)	$P(S \cup M \cup D) = 1$ so $q = 1 - (0.17 + 0.10 + 0.15 + 0.06 + 0.04) - p$ or $0.48 - p$	M1		
2002-0	q = 0.39	A1ft		
			(2)	

Question Number	Scheme	Marks
(a)(i)	$H_0: p = 0.35$ $H_1: p \neq 0.35$	Bl
(ii)	B(15,0.35)	M1
	CR $X \le 1 \cup X \ge 10$ (Allow any letter)	AlAl
		(4)
(b)	8 is not in CR	M1
	There is evidence that the Company's <u>claim</u> is true	Alft
		(2)
(c)	0.0142 + 0.0124 = 0.0266	B1
		(1)
		[7]

Section C: Mechanics

Question Number	Scheme	Marks	Notes
(a)	$h = -20 \times 5 + \frac{1}{2} \times 9.8 \times 25$	M1 A1	Use of $s = ut + \frac{1}{2}at^2$ to find <i>h</i> . Must quote the correct formula and be using 20 & 5, but condone slips in substitution. Accept complete alternative solutions working via the maximum height. (max ht 20.4, time to top 2.04) Accept complete alternative methods using other suvat equations. Correctly substituted equation(s) Condone use of a premature approximation.
	h = 22.5	A1 (3)	Final answer. Accept 22.5 or 23. Maximum 3sf. -22.5 is A0.
	NB Do not ignore subsequent working if they reach 22.5 and then move on to do further work.		
(b)	$V^2 = 20^2 + 2 \times 9.8 \times 22.5$ OR $V = -20 + (5 \times 9.8)$	M1	First ball - use of <i>suvat</i> to find V or V^2 Follow their <i>h</i> .
	$(V^2 = 841) = 29$	A1	Correct only (condone -29)
	$\left(\frac{3}{4}V\right)^2 = w^2 + 2 \times 9.8 \times 22.5$ $w^2 = \frac{9}{16} \times 841 - 2 \times 9.8 \times 22.5$	M1	Second ball - suvat equation in V (or their V) to find w. Must be using the $\frac{3}{4}$.
	$w^2 = \frac{9}{16} \times 841 - 2 \times 9.8 \times 22.5$	A1ft	Correctly substituted equation with their V and their h .
	w = 5.66	A1	or 5.7. Answer correct to 2 s.f. or to 3 s.f.
		(5)	
		[8]	

Question Number	Scheme	Marks	Notes
(a)	$v_1 = 8 \times 1.5 (= 12)$ $v_2 = 12 + 0.8 \times 20$ $v_2 = 28 \text{ m s}^{-1}$	M1 M1 A1 (3)	Use of $v = u + at$ or equivalent for $t = 8$ Follow their 12
(b)	· 1		
		B1 B1ft	shape nos: 8,28; 12,28 indicated. Follow their 12, 28
	8 28	(2)	
(c)	first 8 s: dist = $\frac{1}{2} \times 8 \times 12$ (= 48)	M1 A1ft	Correct method for distance for the triangle (0-8) or the trapezium (8-28) Follow their 12
	next 20 s: dist = $\frac{1}{2} \times (12 + 28) \times 20$ (= 400)	A1ft	Follow their 12, 28
	Total dist = 448 m	A1 (4)	Correct answer only (cao)
(d)	$0 = 28^2 - 2 \times 2.8s$	M1	Find area of right hand triangle or an expression in <i>T</i> for the trapezium (rectangle + triangle).
	$s = \frac{28^2}{2 \times 2.8} (= 140)$	A1ft	Follow their 28
	2×2.8 448+140+28T = 2000	DM1	Form an equation in T for their 16, 448 and 140
	$T = \frac{2000 - 448 - 140}{28} = 50.4$	A1 (4)	Or better (50.42857) Accept 50.
	20	[13]	