End of Year 12 AS Pure & Applied - Homework 2 (2 hr) MARK SCHEME

Section A: Pure Mathematics

Question Number	Scheme	Marks	
	$v = x^3 + 10x^{\frac{3}{2}} + kx$		
(-)	$\frac{dy}{dx} = 3x^2 + 10 \times \frac{3}{2}x^{\frac{1}{2}} + k$	M1 A1	
(a)	$\frac{1}{dx} = 3x + 10x - 2x^2 + k$	[2	
(b)	Substitutes $x = 4$ and $\frac{dy}{dx} = 0$ to give $3(4)^2 + 15(4)^{\frac{1}{2}} + k = 0 \implies k = -78$ *	M1 A1*	
(-)	When 1 = 4 = 160 (4hi 44 d d h h 160)	[2	
(c)	When $x = 4$, $y = -168$ (see this stated – or see rectangle has height 168)	B1	
	$\int x^3 + 10x^{\frac{5}{2}} - 78x \ (+168) dx = \frac{1}{4}x^4 + \frac{10}{\frac{5}{2}}x^{\frac{5}{2}} - \frac{78}{2}x^2 \ (+168x + c)$	M1 A1	
	Use limits 0 and 4 to give ± 432 or if $168x$ included to give ± 240	dB1	
	Rectangle area is $4 \times "168"$ (= 672) or see $168x$ in integrated answer with limits	M1	
	So R has area "672 – 432" or see +168 in original integrand	M1	
	= 240	A1	
		[7	
		11 mark	
	Notes		
(a)	M1: Fractional power dealt with correctly so becomes $\frac{3}{2}x^{\frac{1}{2}}$ (may be implied by		
	simplification to 15)		
	A1: All terms correct, may not be simplified		
(b)	8 8 8		
	M1: Substitutes $x = 4$ and $\frac{dy}{dx} = 0$ Must see $3(4)^2 + 15(4)^{\frac{1}{2}} + k = 0$ or $48 + 30 + k = 0$		
	*A1: This is a printed answer so all must be correct in the working and conclusion	k = -78 is	
(c)	needed.		
	B1: Substitute into $y = \text{to find } y$ (This may appear anywhere in the answer)		
	M1: Attempt to integrate so at least one power increases		
	Al: Accept unsimplified correct answer and allow with or without their +168x, or even with their -168x		
	dB1: Use limit 4 to give 432 but may be implied by later answer 240- needs to follow M1A1		
	for integration		
	M1: Calculates rectangle area (may be by integration). Must be rectangle and not triangle area M1: Subtracts (either way round) numerical areas – should be (+) – (+) or (-) - (-)		
	(subtraction may be in their original integral but penalize wrong sign here eg -168x instead of		
	+168x) (Again use of triangle is M0)		
	A1: 240 only (Can recover from -240 to 240)		
	Common error:	N NS	
	If 168x (instead of 168) is integrated this may only gain a maximum of B1 M1 A1	dB1 (for	
	seeing 432 calculated if integrals are separated) M0 M0 A0 4/7		

Question Number	Scheme	Marks
	(a) Use or state $2\log_4(2x+3) = \log_4(2x+3)^2$	M1
	Use or state $\log_4 4 = 1$ or $4^1 = 4$	M1
	Use or state $\log_4 x + \log_4 (2x - 1) = \log_4 x (2x - 1)$ or $\log_4 (2x + 3)^2 - \log_4 x = \log_4 \frac{(2x + 3)^2}{x}$ etc	M1
	$(2x+3)^2 = 4x(2x-1)$ or equivalent including correct rational equations	A1
	Then $4x^2 + 12x + 9 = 8x^2 - 4x$ and so $4x^2 - 16x - 9 = 0$ *	A1*
		[:
	(b) $(2x + 1)(2x - 9) = 0$ so $x = (or use other method e.g formula or completion of square)$	M1
	$X = (-\frac{1}{2} \text{ or }) \frac{9}{2}$	A1
	622 5.0 368 998	[2
		7 mark
	Notes	

(a) M1: Uses power law for logs

M1: Connects 1 with 4 correctly

M1: Uses addition (or subtraction) law correctly

e.g.
$$\log_4 x + \log_4 (2x - 1) = \log_4 x (2x - 1)$$
 or $\log_4 (2x + 3)^2 - \log_4 x = \log_4 \frac{(2x + 3)^2}{x}$ or

$$\log_4(2x+3)^2 - \log_4 x - \log_4(2x-1) = \log_4 \frac{(2x+3)^2}{x(2x-1)}$$
 or even $\log_4 x + \log_4 4 = \log_4 4x$ or

$$\log_4(2x-1) + \log_4 4 = \log_4 4(2x-1) \text{ or } \log_4(2x-1) + \log_4 4 + \log_4 x = \log_4 4x(2x-1) \text{ etc.} \dots$$

A1: Correct equation (unsimplified) after correct work. e.g.
$$\frac{(2x+3)^2}{x(2x-1)} = 4$$

A1: Obtains printed answer correctly (This is a given answer so needs previous A mark to have been awarded and needs correct expansion)

Special case:

$$\log_{4}(2x+3)^{2} = 1 + \log_{4}x(2x-1) \quad so \quad \frac{\log_{4}(2x+3)^{2}}{\log_{4}x(2x-1)} = 1 \quad so \quad \frac{4x^{2} + 12x + 9}{2x^{2} - x} = 4$$

This can have M1, M1, M1, A0, A0 so 3/5 losing accuracy because of the error in the second step.

(b) Some candidates who did not achieve marks in part (a) begin the log work again and make more progress here. Mark the better work. So credit for (a) may be given in (b). Credit for (b) should not be given in (a)

M1: Uses solution of their quadratic or of printed quadratic(see notes). This must be in part (b)

A1: x = 4.5 and discards x = -0.5 (any equivalent form) Giving $x = -\frac{1}{2}$, $\frac{9}{2}$ is A0 This must be in part (b)

Question Number	Scheme	Marks
(a)	$1000 < V \le 23000$	B1,B1 (2)
(b)	$\frac{dV}{dt} = 18000 \times -0.2e^{-0.2t} + 4000 \times -0.1e^{-0.1t}$	M1
	$\frac{dV}{dt}\Big _{t=10} = 18000 \times -0.2e^{-2} + 4000 \times -0.1e^{-1} = awrt(-)634$	M1A1
5200	SPECIAL SPECIA	(3)
(c)	$15000 = 18000e^{-0.2t} + 4000e^{-0.1t} + 1000$ $0 = 9e^{-0.2t} + 2e^{-0.1t} - 7$	
	$0 = (9e^{-0.1t} - 7)(e^{-0.1t} + 1)$	M1A1
	$9e^{-0.1t} = 7 \Rightarrow t = 10\ln\left(\frac{9}{7}\right)oe$	dM1A1
		(4) (9 marks)

(a)

B1 Accept either boundary: V < 23000 or $V \le 23000$ or $V_{max} 23000$ for the upper boundary and V > 1000 or $V \ge 1000$ or $V_{min} 1000$ for the lower boundary. Answers like $V \ge 23000$ are B0

B1 Completely correct solution.

Accept $1000 < V \le 23000$, 1000 < Range or $y \le 23000$, (1000, 23000], V > 1000 and $V \le 23000$

(b)

M1 Score for a
$$\frac{dV}{dt} = Ae^{-0.2t} + Be^{-0.1t}$$
, where $A \neq 18000$, $B \neq 4000$

M1 Sub t = 10 into a $\frac{dV}{dt}$ of the form $Ae^{-0.2t} + Be^{-0.1t}$ where $A \neq 18000$, $B \neq 4000$

Condone substitution of t = 10 into a $\frac{dV}{dt}$ of the form $Ae^{-0.2t} + Be^{-0.1t} + 1000$ $A \neq 18000$, $B \neq 4000$

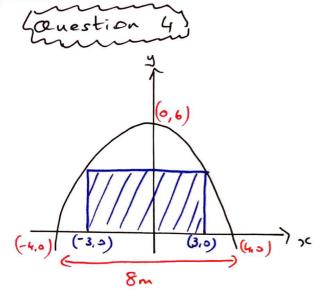
A1 Correct solution and answer only. Accept ± 634 following correct $\frac{dV}{dt} = -3600e^{-0.2t} - 400e^{-0.1t}$ Watch for students who sub t = 10 into their V first and then differentiate. This is 0,0,0.

Watch for students who achieve +634 following $\frac{dV}{dt} = 3600e^{-0.2t} + 400e^{-0.1t}$. This is 1,1,0

A correct answer with no working can score all marks.

(c)

M1 Setting up 3TQ in $e^{\pm 0.1t}$ AND correct attempt to factorise or solve by the formula. For this to be scored the $e^{\pm 0.2t}$ term must be the x^2 term.


A1 Correct factors $(9e^{-0.1t} - 7)(e^{-0.1t} + 1)$ or $(7e^{0.1t} - 9)(e^{0.1t} + 1)$ or a root $e^{-0.1t} = \frac{7}{6}$

dM1 Dependent upon the previous M1.

This is scored for setting the $ae^{\pm 0.1t} - b = 0$ and proceeding using correct ln work to t = ...

A1 $t = 10 \ln \left(\frac{9}{7} \right)$. Accept alternatives such as $t = \frac{1}{0.1} \ln \left(\frac{9}{7} \right), \frac{1}{-0.1} \ln \left(\frac{7}{9} \right), -10 \ln \left(\frac{7}{9} \right)$

If any extra solutions are given withhold this mark.

Setting up quadratic equation for the arch

=> Negative parabola ... - xc2

Start with $y = A - Bx^2$ B1 $y = 6 - Bx^2 \quad A = 6$ highest point

$$y = 6 - \frac{3}{8} x^2$$

Using (3,0) =)
$$y = 6 - \frac{3}{8}(3^2)$$
 [1]
$$= 6 - \frac{27}{8}$$

$$= \frac{21}{8}$$

$$= 2\frac{5}{8}$$
 [A1]

Since 25 >2

.. Lorry can pass through the tunnel with a clearance of \$ = 0.625 m

Equestion 5

a, Using proof by exhaustion

n can be either even or odd number

Suppose n :s even, then n = 2k, where k & Z

· · 2 n2 + · n = 2 (2 k2)2+2k Mi

= 2 (4k2) +2k

= 8k2 +2k

= 4(2K2)+2k

which is not a multiple of 4

Suppose n is odd, then n=2k+1, where k & Z

1. 2n2+ n = 2(2k+1)2+2k MI

= 2 (4162+41+1) +2k

= 8k2+8k+2+2k

= 8 k2 + 10 k + 2

= 4 (2k2+2k)+2k+2

which is not a multiple of 4

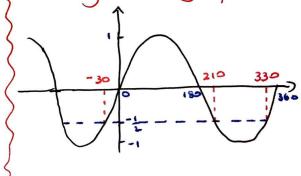
i. 2n2+n is not divisible by 4 for n & Z

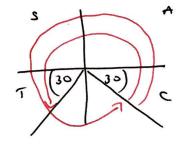
b, Using pro-f by exhaustion

Since x EP, x can be either negative (xxo) or positive (xxo) or 0

 $x<0, x=-1 =) e^{4(-1)} < e^{3(-1)}$

e-4 < e-3 .. statement that e > e3"


is not true when x < 0


$$x > 0, x = 1 = 0$$
 $e^{4(x)} > e^{3(x)}$ $(x = 1)$ $e^{4} > e^{4} > e^{4} > 0$

If
$$n=0 \implies e^{4(0)} = e^{3(0)}$$

$$5:n \times = -\frac{1}{2}$$

Alternative Method! Using sine graph

Section B: Statistics

Question 7

Q	Marking Instructions	AO	Marks	Typical Solution
	Sets up enumerated population using valid numbering stating range used (PI)	AO2.4	E1	Give each student a number from (000)1 to 3200 or equivalent
	Explains how to obtain sample with respect to a specified range of random numbers. Accept random number generator / calculator set to give numbers from 1 to 3200 Do not accept 'drawn from a hat' (impractical for 3200 population)	AO2.4	E1	Generate random four digit integers using calculator
	Explains how to deal with repeats and random numbers outside range (PI by both 'different' numbers and 'numbers from 1 to 3200' seen).	AO2.4	E1	Ignore repeats and any (random) numbers outside the range Continue until 60 different numbers have been identified and select the
	Explains how to select the 60 (expresses idea of matching numbers to students or selecting them)	AO2.4	E1	students given those numbers
	Total		4	

Question	Scheme	Marks
(a)(i)	x+0.1 [P(x + 0.1) is B0]	B1
(b)	x+y+0.1 (o.e.) [$P(x+y+0.1)$ is B0]	B1 (1)
(c)	x+y+0.1+0.32 = 1 or $x+y+0.1 = 0.68$ or "(b)" + 0.32 = 1 o.e. x+0.1 = 2(y+0.1) Eliminating x gives $3y = 0.48$	M1 M1 M1 M1 A1 A1
	x = 0.42 $y = 0.16$	(5)
	Notes	

Question Number			Scheme		Marks
(a)	$P(X=5) = {}^{20}C_5(0.3)^5(0.7)^{15}$	or	0.4164 - 0.2375		M1
	= 0.17886			awrt 0.179	A1 (2)

(b)	$H_0: p = 0.3$ $H_1: p > 0.3$	B1
	X~B(20,0.3)	M1
	$P(X \ge 8) = 0.2277$ or $P(X \ge 10) = 0.0480$, so $CR X \ge 10$	A1
	Insufficient evidence to reject H_0 or Not Significant or 8 does not lie in the critical region.	dM1
	There is no evidence to support the <u>Director (of Studies')</u> <u>belief</u> /There is no evidence that the <u>proportion</u> of <u>parents</u> that <u>do not support</u> the <u>new curriculum</u> is greater than 30%	A1cso
(c)	X~B(2n, 0.25)	(5)
(0)	$X \sim B(8, 0.25) P(X \ge 4) = 0.1138$	M1
	$X \sim B(10, 0.25) P(X \ge 5) = 0.0781$	
	2n = 10	A1
	n=5	A1
		(3)

	Notes
a)	M1 $^{20}C_5(p)^5(1-p)^{15}$ or using $P(X \le 5) - P(X \le 4)$
b)	M1 use of $20 \times 0.7 \times 0.3$ (with or without the square root)
c)	B1 both hypotheses correct (p or π)
	M1 using X~B(20,0.3) (may be implied by 0.7723, 0.2277, 0.8867 or 0.1133)
	A1 awrt 0.228 or CR $X \ge 10$
	dM1 a correct comment (dependent on previous M1)
	A1 cso requires correct contextual conclusion with underlined words and all
	previous marks in (c) to be scored.

Section C: Mechanics

$h = \frac{1}{2} gt^2$		B1	
h = 7.35(t)	$-\frac{1}{2}$) + $\frac{1}{2}$ $g(t-\frac{1}{2})^2$	M1 A1	
$\frac{1}{2}gt^2 = 7.35(t - 1)$	$(\frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$	DM1	
t = 1		M1 A1	
h = 4.9		A1	7
NOTES			
Question			
B1 for $h = \frac{1}{2}gt^2$ or First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$	$h = \frac{1}{2}g(t + \frac{1}{2})^2$		
First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$	or $h = 7.35t + \frac{1}{2}gt^2$		
M0 if different t used in the two terms and			
signs. First A1 for appropriate t value used			
Second M1, dependent, for equating their t have different t's in the two expressions	wo expressions for h , but must		
Third M1, independent, for solving for th	eir t (must have used two		
expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}$)			
Third A1 for $h = 4.9$			
N.B. See alternative below where t is elimi			
$h = \frac{1}{2}gt^2$	B1		
$h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$	M1A1		
$h = 7.35(\sqrt{\frac{2h}{g}} - \frac{1}{2}) + \frac{1}{2}g(\sqrt{\frac{2h}{g}} - \frac{1}{2})^2$	DM1		
$h = 7.35\sqrt{\frac{2h}{g}} - 3.675 + 4.9(\frac{2h}{g} - \sqrt{\frac{2h}{g}} + 0.25)$	A1		
h = 4.9	M1 A1	1	

(a)	For B: $1 = \frac{1}{2}a.2^2 \implies a = \frac{1}{2} \text{ m s}^2$		M1 A1 (2)
(b)			
	$T-F=3m\times0.5$	M1A1	
	$2mg - T = 2m \times 0.5$	M1A1	
	F = 2mg - 2.5 m		
	F = 19.6m - 2.5m	M1	
	F = 17.1m	A1	
(c)	$v = \frac{1}{2} \times 2 = 1$		B1 ft
	-17.1m = 3ma		M1
	a = -5.7		M1
	$0^2 = 1^2 + 2(-5.7)s$		IVII
	s = 0.0877(.0.09 or better)		A1
	s < 0.3 correct conclusion,		DM 1A1 cso (6)
			16