End of Year 12 AS Pure \& Applied - Homework 3 (2 hr) MARK SCHEME

Section A: Pure Mathematics

Question 1

Question 2

Question	Scheme	Marks

(ii)	Use or state $\log _{2} 16=4$ or $2^{4}=16$ Use $\log _{2}(x+3)-\log _{2}(2 x+4)=\log _{2} \frac{(x+3)}{(2 x+4)}$ Then $\frac{x+3}{(2 x+4)}=16$, and so $x=\frac{61}{31}$	B1 M1 A1, A1 [4] 6 marks
Alt (ii)	$\begin{aligned} & \log _{2}(x+3)-\log _{2}(2 x+4)=\log _{2} 16 \\ & \log _{2}(x+3)=\log _{2} 16+\log _{2}(2 x+4) \\ & \log _{2}(x+3)=\log _{2} 16(2 x+4) \\ & (x+3)=16(2 x+4) \\ & x=-\frac{61}{31} \end{aligned}$	B1 M1 A1 A1

Question 2(ii)

$$
\begin{align*}
& e^{2 y}=x+1 \Longrightarrow 0 \\
& \ln (x-2)=2 y-1 \Rightarrow x-2=e^{2 y-1} \\
& x-2=e^{2 y} \cdot e^{-1} \\
& x-2=\frac{e^{2 y}}{e}
\end{align*}
$$

Sub (1) in (2)

$$
\begin{aligned}
x-2 & =\frac{x+1}{e} \quad\left[\begin{array}{l}
\text { Replacing } e^{2 y} \text { by } \\
e^{2 y}=x+1
\end{array}\right] \\
e(x-2) & =x+1 \\
e x-2 e & =x+1 \\
e x-x & =1+2 e \\
x(e-1) & =1+2 e \\
x & =\frac{1+2 e}{e-1} \\
x & =3.75 \text { (35.F) }
\end{aligned}
$$

Sub $x=\frac{1+2 e}{e-1}$ in $\ln (x-2)=2 y-1$

$$
\begin{aligned}
\Rightarrow \ln \left[\frac{1+2 e}{e-1}-2\right] & =2 y-1 \\
0.5572 \ldots & =2 y-1 \\
y & =0.779 \text { (3 s.f) }
\end{aligned}
$$

Question 3

Question 4

Question Number	Scheme	Marks
(i)	```(sin x+\operatorname{cos}x)(1-\operatorname{sin}x\operatorname{cos}x)\equiv\operatorname{sin}x+\operatorname{cos}x-\mp@subsup{\operatorname{sin}}{}{2}x\operatorname{cos}x-\mp@subsup{\operatorname{cos}}{}{2}x\operatorname{sin}x (sin}x+\operatorname{cos}x)(1-\operatorname{sin}x\operatorname{cos}x)\equiv\operatorname{sin}x+\operatorname{cos}x-(1-\mp@subsup{\operatorname{cos}}{}{2}x)\operatorname{cos}x-(1-\mp@subsup{\operatorname{sin}}{}{2}x)\operatorname{sin} (sin}x+\operatorname{cos}x)(1-\operatorname{sin}x\operatorname{cos}x)\equiv\mp@subsup{\operatorname{sin}}{}{3}x+\mp@subsup{\operatorname{cos}}{}{3}```	$\begin{gathered} 1^{\mathrm{st}^{\mathrm{nd}} \mathrm{M} 1} \\ 2^{2} \mathrm{M} 1 \\ \mathrm{~A} 1^{*} \end{gathered}$
Alt I (i)	$\begin{aligned} & \text { Use LHS }=(\sin x+\cos x)\left(\sin ^{2} x+\cos ^{2} x-\sin x \cos x\right) \\ & \equiv \sin ^{3} x+\sin x \cos ^{2} x-\sin ^{2} x \cos x+\sin ^{2} x \cos x-\cos ^{2} x \sin x+\cos ^{3} x \\ & (\sin x+\cos x)(1-\sin x \cos x) \equiv \sin ^{1} x+\cos ^{3} x \end{aligned}$	$\begin{array}{\|c} \hline 2^{\text {nd }} \mathrm{M} 1 \\ 1^{\text {1t }} \mathrm{M} 1 \\ \mathrm{~A} 1 * \\ \quad[3] \end{array}$
Alt II (i)	$\begin{aligned} \text { Use RHS } & \equiv \sin ^{3} x+\cos ^{3} x=(\sin x+\cos x)\left(\sin ^{2} x+\cos ^{2} x-\sin x \cos x\right) \\ & =(\sin x+\cos x)(1-\sin x \cos x) \end{aligned}$	M1 M1 A1 [3]

Question 4 (ii)

$$
\begin{aligned}
\frac{\sin \theta}{1+\cos \theta+1+\cos \theta} & =\frac{\sin ^{2} \theta+(1+\cos \theta)^{2}}{\sin \theta(1+\cos \theta)} \quad \text { (coss multiply } \\
& =\frac{\sin ^{2} \varphi+\left(1+2 \cos \theta+\cos ^{2} \theta\right)}{\sin \theta(1+\cos \theta)} \\
& =\frac{\sin ^{2} \theta+\sin ^{2} \theta+\cos ^{2} \theta+1+2 \cos \theta}{\sin \theta(1+\cos \theta)} \\
& =\frac{1+1+2 \cos \theta}{\sin \theta(1+\cos \theta)} \\
& =\frac{2+2 \cos \theta}{\sin \theta(1+\cos \theta)} \\
& =\frac{2(1+\theta \theta \cos \theta}{\sin \theta(1+\cos \theta)} \\
& =\frac{2}{\sin \cos \theta}
\end{aligned}
$$

Question 5

F.	Finds $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-6$ M 1 Gradient of curve at P is -2	M 1
Normal gradient is $\frac{-1}{m}=\frac{1}{2}$	M1	
Thus equation of normal is $(y-2)=\frac{1}{2}\left(x-\frac{1}{2}\right)$	or $\quad 4 y=2 x+7$	
Eliminate y between $=\frac{1}{2} x+\ln (2 x)$ and normal equation to give an equation		
in x	M1	
Solve $\ln 2 x=\frac{7}{4}$ so $x=\frac{1}{2} e^{\frac{7}{4}}$	A1	
Subsitute to find a value for y	M1	
Point Q is $\left(\frac{1}{2} e^{\frac{7}{4}}, \frac{1}{4} e^{\frac{7}{4}}, \frac{7}{4}\right)$	A1	

Question 6

Question	Scheme	Marks
(a)	$\left[\mathrm{P}(\text { both blue })=\frac{1}{20} \times \frac{1}{20}=\right] \frac{1}{400} \text { oe }$	B1
		(1)
(b)	$P(\text { exactly } 1 \text { red })=2 \times \frac{1}{20} \times \frac{19}{20},=\frac{19}{200} \text { oe }$	M1, A1
		(2)
(c)	$P(2 \text { yellow and } 1 \text { green })=3 \times \frac{4}{9} \times \frac{5}{8} \times \frac{4}{7}=\frac{10}{21} \text { oe }$	$\begin{aligned} & \text { B1 M1 } \\ & \text { A1 } \end{aligned}$
(d)		(3)
	$\begin{aligned} & \mathrm{P}(\text { All beads are yellow })=\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6} \\ & \begin{aligned} \mathrm{P}(\text { At least } 1 \text { bead is green })= & 1-\mathrm{P}(\text { All beads are yellow }) \\ & 1-\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}=\frac{121}{126} \end{aligned} \end{aligned}$	M1
		M1A1
		(3)
		Total 9

Question 7

Question	Scheme	Marks
(a)	(Time is) continuous	B1
(b)	40 people $=8$ large squares/ 200 small squares	
	200 people $=40$ large squares $/ 1000$ small squares	B1
	$40 /(21-11)$ or correct scale on f.d. axis	
	$\frac{x}{40}=\frac{180}{200} \text { or } \frac{x}{40}=\frac{7.2}{8} \text { or }(21-18) \times 4+(25-21) \times 6$	M1
	36 people (spent between 18 and 25 minutes shopping in the supermarket)	A1
		(3)
(c)	$\text { Median }=26+\frac{[30]}{36} \times 5=\operatorname{awrt} \underline{\mathbf{3 0 . 2}}$	M1A1
		(2)
(d)	$\sum \mathrm{fx}=16 \times 40+23.5 \times 30+28.5 \times 36+33.5 \times 40+38.5 \times 14+46 \times 20+61 \times 20$	M1
	$=6390$ **	A1cso (2)
(e)	$\text { i } \bar{x}=\frac{6390}{200}=31.95$	B1
	ii $\sigma=\sqrt{\frac{238430}{200}-31.95^{2}}=\sqrt{171.3475}=13.09$ (or $s=13.122$) awrt $\underline{13.1}$	M1A1
		(3)

	Notes	
$\begin{aligned} & \text { (a) } \\ & \text { (b) } \end{aligned}$	Allow not discrete. Condone misspellings if intention of 'continuous' is clear. B1 for establishing a ratio (usually 5 or $1 / 5$) between people and area or calculating f.d. (may be implied by M1) M1 for a correct ratio or expression using areas for the people from 18 to 25 A1 36 cao (Answer of 36 scores 3 out of 3).	
(c)	M1 for an attempt at the medians (should have 26, 36 and 5). If working down 31- $\frac{[6]}{36} \times 5$	
	A1 awrt 30.2 (can come from using ($n+1$))	
(d)	M1 for a correct expression for $\sum \mathrm{fx}$ condone one incorrect product	
	A1cso for 6390 and all correct	
(e)(i)	B1 31.95 or equivalent fraction	
(ii)	M1 for correct expression for standard deviation including root	
	A1 awrt 13.1 (answer of awrt 13.1 scores 2 out of 2$) \quad[\mathrm{NB}(s=13.122)]$	

Section C: Mechanics

Question 8

Question	Scheme	Marks	Notes
		M1	Use $s=u t+\frac{1}{2} a t^{2}$ or a complete suvat route to find h in terms of t
	$h=\frac{1}{2} g t^{2}$	A1	Or $\quad h=\frac{1}{2} g(t+1)^{2}$. The expression for time used in the first equation defines the expression expected in the second equation.
	$h=19.6(t-1)+\frac{1}{2} g(t-1)^{2}$	A1	Or $\quad h=19.6(t)+\frac{1}{2} g(t)^{2}$ or $h=4.9+\left(9.8 t+\frac{1}{2} g t^{2}\right)$
	$\frac{1}{2} g t^{2}=19.6(t-1)+\frac{1}{2} g(t-1)^{2}$	M1	Equate the two expressions for h.
		DM1	Solve for t. Dependent on the previous M1.
	$t=1.5$	A1	Using the "Or" approach gives $t=0.5$
	$h=11 \mathrm{~m}$ or 11.0 m	A1	Accept 2 or 3 s.f. only
		7	

Question 9

Question Number	Scheme	Marks	Notes
(a)		B1	shape
		B1	rel grad - RHS steeper than LHS
		B1 (3)	17 and 170 shown
(b)	$T ; 2 T$	B1	Correct ratios of times for acceleration and deceleration seen or implied.
	$\begin{aligned} & \frac{170+(170-3 T)}{2} 17=2125 \\ & \text { Or } \frac{1}{2} \times T_{1} \times 17+17\left(170-\left(T_{1}+T_{2}\right)\right)+\frac{1}{2} \times 17 \times T_{2}=2125 \\ & \text { Or } 2125=\frac{17}{2}\left(170+T^{\prime}\right) \end{aligned}$	M1	Form an equation for total distance with their times
		A2	-1 each error
	$\begin{array}{r} T=30 \\ \text { Or } T_{1}+T_{2}=90 \end{array}$	A1	Use their equation and the correct ratio to find the value for time decelerating or the total of time accelerating and decelerating
		M1	Use of $v=u+a t$ or equivalent
	decel $=\frac{17}{30}$ oe	A1	$(0.5 \dot{6}) 3$ sf or better. Must be positive.
		(7)	
		10	

Question 10

