

A level Statistics Paper 1 MARK SCHEME

Question Number	Scheme	Mai	ks
(a)	70 - 80 group - width 0.5 (cm)	B1	
	1.5 cm ² is 10 customers or 3.75 cm ² is 25 customers or $0.5c = 3.75$ or $\frac{2.5}{\frac{1}{3}}$	M1	
	70 – 80 group - height 7.5 (cm)	A1	
			(3)
(b)	Median = $(70) + \frac{13.5}{25} \times 10$ allow $(n + 1) = (70) + \frac{14}{25} \times 10$	M1	
	= 75.4 (or if using $(n + 1)$ allow 75.6)	A1	
			(2)
(c)	$\left[\text{Mean } = \frac{6460}{85} \right] = 76$	B1	
	$\sigma = \sqrt{\frac{529400}{85} - 76^2}$	M1	
	= 21.2658 (s = 21.3920) awrt 21.3	A 1	
			(3)
	Notes		
(a)	B1 for 0.5		
	M1 for one of the given statements <u>or</u> any method where "their width" × "their height" Correct height scores M1A1 independent of width so B0M1A1 is possible.	" = 3.7	5
(b)	M1 for a correct fraction: $+\frac{k}{25} \times 10$ where $k = 13.5$ or 14 for $(n + 1)$ case.		
	NB may work down so look out for (80) $-\frac{11.5}{25} \times 10$ etc Beware: $69.5 + \frac{13.5}{25} \times 11 = 75.44$ (but M0)		
(c)	M1 for a correct expression with square root, ft their mean A1 for awrt 21.3 or, if clearly using <i>s</i> allow awrt 21.4. Must be evaluatedno surds.		

Question Number	Scheme	Marks
	mean $= \frac{60.8 + 20}{1.4}$ <u>or</u> $60.8 = 1.4x - 20$ (o.e.)	M1
	= 57.7142 awrt 57.7	A1
	standard deviation = $\frac{6.60}{1.4}$ or $6.60 = 1.4x$	М1
	= 4.7142 awrt 4.71	A1
		(4)
		Total 4
	Notes	
	1 st M1 sub. 60.8 for y into a correct equation. Allow use of x or any other letter or expression for mean 1 st A1 for awrt 57.7 or $\frac{404}{7}$ (o.e.). Correct answer only is 2/2	
	2^{nd} M1 sub. 6.60 or 6.6 for y and ignoring the 20 Allow use of x or any other letter or expression for st. dev. $6.60^2 = 1.4^2 x^2$ is M0 until we see them take a square root.	
	2^{nd} A1 for awrt 4.71 or $\frac{33}{7}$ (o.e.). Correct answer only is 2/2	

Question Number	Scheme			Marks			
(a)	[P(A) = 1 - 0.18 - 0.22] = 0.6 (or exact equivalent)			B1			
					(1)		
(b)	$P(A \cup B) = "0.6" + 0.22 = 0.82$ (or exact equivalent)				B1ft		
					(1)		
(c)				$\cap B$) Use $P(B)P(A' B) = P(A')$		Establish independence before or after 1 st M1 and score marks for (d) (RH ver)	M1
	$\frac{x}{x+0.22} = 0.6$	$P(B) \times [1 - 0.6] = 0$.22	Find P(B)			
	x = 0.6x + 0.132	Use $P(A \cap B) = P(A \cap B)$	$A \mid B) \mathbb{P}(B)$	Use $P(B)P(A) = P(A \cap B)$	dM1		
	0.4x = 0.132	$\mathbf{P}(A \cap B) = 0.6 \times 0.$	55	$\mathbb{P}(A \cap B) = 0.6 \times 0.55$	divii		
		x = 0.33 (o	r exact equivalent)		Alcso		
	D(D) 0.55				(3)		
(d)	P(B) = 0.55						
	$\mathbf{P}(B) \times \mathbf{P}(A) = 0.53$		or stating $P(A)$	= P(A B) [= 0.6]	M1		
	= 0.3		$a = \mathbf{D}(A) = \mathbf{D}(A)$	D)			
	$P(B) \times P(A) = P(A)$ therefore (statistic	ally) independent	or $P(A) = P(A A)$ therefore (stat	رم istically) independent	A1cso (2)		
	incretore (statistically) independent				Total 7		
	Notes						
(b)	B1ft for their	(a) + 0.22 or 1 - H	$P(A' \cap B')$ Do not ft	their (a) if it is > 0.78			
	NB 3	versions for (c). C	check carefully that	t Ms are genuinely scored.			
	Look out for ass	uming independen	<u>ce</u> and if you see P	(B) = 0.55 check it is <u>derived</u>	properly		
(c)	1 st M1 for a correct equation for x e.g. $\frac{x}{x+0.22} = 0.6$ or a correctly derived equation for P(B)				on for $P(B)$		
	$2^{nd} dM1$ for solving to get in form $kx = L$ or correct use of $P(B)$ to find $P(A \cap B) [2^{nd} \text{ or } 3^{rd} \text{ ver}]$ or $P(A \cap B) = P(B) - 0.22$						
	A1cso for 0.33 Dep. on both Ms and no incorrect working seen.						
(d)	M1 for finding $P(B) \times P(A) = 0.33$ (values needed) or stating $P(A) = P(A B)$ (= 0.6 not needed)						
	A1cso for a correct statement: $P(B) \times P(A) = P(A \cap B)$ or $P(A) = P(A B)$ and stating independent						
	NB The M1 in (d) using $P(A \cap B)$ requires $P(B) = 0.55$						
	There is no ft of an incorrect $P(B)$ Full marks in (d) is OK even if 0/3 in (c)				8		
	{This Venn diagram may be helpful.}			.18			

Question Number	Scheme	Marks			
(a)	0.02 B $P(JnB) = 0.005 \text{ or } \frac{1}{200}$	M1			
	$J = 0.98 B' P(JAB') = 0.245 \text{ or } \frac{49}{200}$				
	0.25 C.03 B P(KnB) = 0.0135 or 27 0.45 K 0.03 B P(KnB) = 0.0135 or 27 2000	A1			
	0.97 B' P(KnB')= 0.4365 or 873				
	0.3 L 0.05 B $P(LnB) = 0.015$ or $\frac{3}{200}$ 0.95 B' $P(LnB') = 0.285$ or $\frac{57}{200}$				
	0.95 B' P(LnB') = 0.285 or $\frac{57}{200}$	(2)			
(b)	0.25×0.98 , = 0.245 (or exact equiv. e.g. $\frac{49}{200}$)	M1A1			
(c)	$0.25 \times 0.02 \pm 0.45 \times 0.02 \pm 0.2 \times 0.05$ = 0.0225 (or exact equiv. e.g. 67)	(2)			
(0)	$0.25 \times 0.02 + 0.45 \times 0.03 + 0.3 \times 0.05$, = 0.0335 (or exact equiv. e.g. $\frac{67}{2000}$)	M1A1 (2)			
(d)	$\left[\mathbb{P}(J \cup L \mid B)\right] = \frac{0.25 \times 0.02 + 0.3 \times 0.05}{0.0335} \underline{\text{or}} \frac{0.0335 - 0.45 \times 0.03}{0.0335}$	M1A1ft			
	= 0.5970 awrt 0.597 (or $\frac{40}{67}$ or exact equiv.)	A1			
		(3)			
	Notes	Total 9			
	Allow fractions or percentages throughout this question				
(a)	Allow 3+6 tree diagram with the 6 correct "end" probs and labels to get 2/2 (1 st , 3 rd , 5 th gets M1) M1 for (3+6) tree drawn with 0.25, 0.45, 0.02, 0.03, 0.05 on correct branches				
	A1 for 0.3, 0.98, 0.97, 0.95 on the correct branches and labels, condone missing B's Correct answer only scores full marks for parts (b), (c) and (d) When using "their probability p" for M1 and A1ft they must have $0 \le p \le 1$				
(b)					
(c)	M1 for $0.25 \times$ their $0.02 + 0.45 \times$ their $0.03 +$ their $0.3 \times$ their 0.05 Condone 1 transcription error. <u>Or</u> $1 - (0.25 \times$ their $0.98 + 0.45 \times$ their $0.97 +$ their $0.3 \times$ their $0.95)$				
(d)	M1 for use of conditional probability with their (c) as denominator. Also exactly 2 products on num' and at least one correct (or correct ft) or their (c) – one of the products from their (c). Ignore an incorrect expression inside their probability statement				
	A1ft for $\frac{0.25 \times \text{their } 0.02 + \text{their } 0.3 \times \text{their } 0.05}{\text{their(c)}} \underline{\text{or}} \frac{\text{their } (c) - 0.45 \times \text{their } 0.03}{\text{their } (c)} \underline{\text{or}} \frac{0}{\text{their}}$	02 ir (c)			

Q5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$\log_{10} c = 1.89 - 0.0131t$	M1	1.1a	6th
	$c = 10^{1.89 - 0.0131t}$	M1	1.1b	Understand
	$c = 77.6 \times 0.970^t$ (3 s.f.)	A1	1.1b	exponential models in bivariate data.
		(3)		
b	<i>b</i> is the proportional rate at which the temperature changes per minute.	A1 (1)	3.2a	6th Understand exponential models in bivariate data.
c	Extrapolation/out of the range of the data.	A1	2.4	4th Understand the concepts of interpolation and extrapolation.
		(1)		
				(5 marks)
	Notes			

Q6	Scheme	Marks
a	r = 0.9940 (4 d.p)	B1A1
	B1 for 0.99 seen A1 for $r = 0.9940$	(2)
b	Linear association between amount of sunshine and ice cream sales	B1
		(1)
c	It requires extropolation and hence it may be unreliable.	B1
		(1)
d	$H_0: \rho = 0, H_1: \rho > 0$	B1
	Critical value = 0.7067	M1
	0.9940 > 0.7067 Reject H ₀	
	There is evidence at the 2.5% level of significance to reject H_0 and to support the alternative hypothesis that the amount of sunshine and ice cream sales are positively correlated.	A1
		(3)

Q7	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
а	$P(X \le 1) = 0.0076$ and $P(X \le 2) = 0.0355$	M1	1.1b	5th
	$P(X \ge 10) = 1 - 0.9520 = 0.0480$ and $P(X \ge 11) = 1 - 0.9829 = 0.0171$	A1	1.1b	Find critical values and critical regions for a binomial distribution.
	Critical region is $X \le 1 \cup 11 \le X (\le 20)$	A1	1.1b	distribution.
		(3)		
b	Significance level = 0.0076 + 0.0171 = 0.0247 or 2.47%	B1	1.1b	6th Calculate actual significance levels for a binomial distribution test.
		(1)		
с	Not in critical region therefore insufficient evidence to reject H_0 .	B1	2.2b	6th

	There is insufficient evidence at the 5% level to suggest that the value of <i>p</i> is not 0.3.	B1	3.2a	Interpret the results of a binomial distribution test in context.	
		(2)			
	(6 marks)				
	Notes				
с					
Conclusi	Conclusion must contain context and non-assertive for first B1.				

Question Number	Scheme	Marks
(a)	$z = \pm 3.2905$ $\sigma = \frac{30}{3.2905}$	B1 M1
	<i>σ</i> = 9.117 **	Alcso (3)
(b)	$H_0: \mu = 1000 H_1: \mu < 1000$	B1
	mean weight = 999.54	B1
	$z = \frac{\vec{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{(999.54 - 1000)}{\frac{9.117}{\sqrt{10}}} = -0.160 \text{or} \frac{c - 1000}{\sqrt{83.12/10}} = -2.3263 \therefore \text{CR } c < 993.29$	M1A1
	1% critical value = -2.3263	B1
	- 2.3263 < -0.160	
	Accept H ₀ / not in critical region	dM1
	There is no evidence that that the machine is delivering packets of mean weight less than 1 kg	A1ft (7)
		Total 10