A level Statistics Paper 1 MARK SCHEME

Question 1

Question 2

Question Number	Scheme	Marks
		$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & (4) \\ \text { Total } 4\end{array}$
	Notes	
	$1^{\text {st }} \mathrm{M} 1$ sub. 60.8 for y into a correct equation. Allow use of x or any other letter or expression for mean $1^{\text {st }}$ A1 for awrt 57.7 or $\frac{404}{7}$ (o.e.). Correct answer only is $2 / 2$ $2^{\text {nd }}$ M1 sub. 6.60 or 6.6 for y and ignoring the 20 Allow use of x or any other letter or expression for st. dev. $6.60^{2}=1.4^{2} x^{2}$ is M0 until we see them take a square root. $2^{\text {nd }} \mathrm{A} 1$ for awrt 4.71 or $\frac{33}{7}$ (o.e.). Correct answer only is $2 / 2$	

Question 3

Question 4

Question Number	Scheme	Marks
(a)		M1
(b)	$0.25 \times 0.98, \quad=0.245$ (or exact equiv. e.g. $\frac{40}{200}$)	M1A1 (2)
(c)	$0.25 \times 0.02+0.45 \times 0.03+0.3 \times 0.05, \quad=0.0335$ (or exact equiv. e.g. $\frac{67}{2000}$)	M1A1
(d)	$[\mathrm{P}(J \cup L \mid B)]=\frac{0.25 \times 0.02+0.3 \times 0.05}{0.0335} \quad \text { or } \frac{0.0335-0.45 \times 0.03}{0.0335}$	M1A1ft
	$=0.5970 \ldots$ awrt 0.597 (or $\frac{40}{6}$ or exact equiv.)	A1
		(3)
	Notes	Total 9
(a)	Allow fractions or percentages throughout this question Allow $3+6$ tree diagram with the 6 correct "end" probs and labels to get $2 / 2\left(1^{\text {tt }}, 3^{\text {rd }}, 5^{\text {th }}\right.$ gets M1)	
	A1 for $0.3,0.98,0.97,0.95$ on the correct branches and labels, condone missing $B^{\prime} \mathrm{s}$ Correct answer only scores full marks for parts (b), (c) and (d) When using "their probability p " for M1 and A1ft they must have $0<p<1$	
(b)	M1 for $0.25 \times$ 'their 0.98 ' o.e.	
(c)	M1 for $0.25 \times$ their $0.02+0.45 \times$ their $0.03+$ their $0.3 \times$ their 0.05 Condone 1 transcription error Or $1-(0.25 \times$ their $0.98+0.45 \times$ their $0.97+$ their $0.3 \times$ their 0.95$)$	
(d)	M1 for use of conditional probability with their (c) as denominator. Also exactly 2 products on num' and at least one correct (or correct ft) or their (c) - one of the products from their (c). Ignore an incorrect expression inside their probability statement	
	A1ft for $\frac{0.25 \times \text { their } 0.02+\text { their } 0.3 \times \text { their } 0.05}{\text { their }(\mathrm{c})}$ or $\frac{\text { their }(\mathrm{c})-0.45 \times \text { their } 0.03}{\text { their }(\mathrm{c})}$ or $\frac{0.02}{\text { their (c) }}$	

Question 5

Q5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$\begin{aligned} & \log _{10} c=1.89-0.0131 t \\ & c=10^{1.89-0.0131 t} \\ & c=77.6 \times 0.970^{t} \quad(3 \text { s.f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$	6th Understand exponential models in bivariate data.
		(3)		
b	b is the proportional rate at which the temperature changes per minute.	A1	3.2a	6th Understand exponential models in bivariate data.
		(1)		
c	Extrapolation/out of the range of the data.	A1	2.4	4th Understand the concepts of interpolation and extrapolation.
		(1)		
(5 marks)				
Notes				

Question 6

Q6	Scheme	Marks
a	$r=0.9940$ (4 d.p)	B1A1
	B1 for $0.99 \ldots$ seen A1 for $r=0.9940$	(2)
b	Linear association between amount of sunshine and ice cream sales	B1
		(1)
c	It requires extropolation and hence it may be unreliable.	B1
		(1)
d	$\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho>0$ Critical value $=0.7067$ $0.9940>0.7067$ Reject H_{0} There is evidence at the 2.5% level of significance to reject H_{0} and to support the alternative hypothesis that the amount of sunshine and ice cream sales are positively correlated.	B1 M1 A1
		(3)

Question 7

Q7	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$\mathrm{P}(X \leqslant 1)=0.0076$ and $\mathrm{P}(X \leqslant 2)=0.0355$	M1	1.1b	5th Find critical values and critical regions for a binomial distribution.
	$\begin{aligned} & \mathrm{P}(X \geqslant 10)=1-0.9520=0.0480 \text { and } \\ & \mathrm{P}(X \geqslant 11)=1-0.9829=0.0171 \end{aligned}$	A1	1.1b	
	Critical region is $X \leqslant 1 \cup 11 \leqslant X(\leqslant 20)$	A1	1.1b	
		(3)		
b	$\begin{aligned} \text { Significance level } & =0.0076+0.0171 \\ & =0.0247 \text { or } 2.47 \% \end{aligned}$	B1	1.1b	6th Calculate actual significance levels for a binomial distribution test.
		(1)		
c	Not in critical region therefore insufficient evidence to reject H_{0}.	B1	2.2b	6th

	There is insufficient evidence at the 5\% level to suggest that the value of p is not 0.3.	B1	3.2a	Interpret the results of a binomial distribution test in context.
C Notes				
Conclusion must contain context and non-assertive for first B1.				

Question 8

