Algebraic Expression - Edexcel Past Exam Questions 2 MARK SCHEME

Question	Scheme	Marks
(a)	$\sqrt{32} = 4\sqrt{2} \text{ or } \sqrt{18} = 3\sqrt{2}$	B1
	$\left(\sqrt{32} + \sqrt{18} = \right) \frac{7\sqrt{2}}{}$	B1 (2)
(b)	$\times \frac{3-\sqrt{2}}{3-\sqrt{2}} \underline{\text{or}} \times \frac{-3+\sqrt{2}}{-3+\sqrt{2}} \text{seen}$	М1
	$\left[\frac{\sqrt{32} + \sqrt{18}}{3 + \sqrt{2}} \times \frac{3 - \sqrt{2}}{3 - \sqrt{2}} = \right] \frac{a\sqrt{2}(3 - \sqrt{2})}{[9 - 2]} \to \frac{3a\sqrt{2} - 2a}{[9 - 2]} \text{ (or better)}$	dM1
	$=$ $3\sqrt{2},-2$	A1, A1 (4
ALT	$(b\sqrt{2}+c)(3+\sqrt{2}) = 7\sqrt{2}$ leading to: $3b+c=7$, $3c+2b=0$	M1
	e.g. $3(7-3b)+2b=0$ (o.e.)	dM1
		6 marks
	Notes	
(a)	1st B1 for either surd simplified	
(a)		se their "5" in (b) to
	1 st B1 for either surd simplified 2 nd B1 for $7\sqrt{2}$ or accept $a = 7$. Answer only scores B1B1 NB Common error is $\sqrt{32} + \sqrt{18} = \sqrt{50} = 5\sqrt{2}$ this scores B0B0 but can u	
	1 st B1 for either surd simplified 2 nd B1 for $7\sqrt{2}$ or accept $a = 7$. Answer only scores B1B1 NB Common error is $\sqrt{32} + \sqrt{18} = \sqrt{50} = 5\sqrt{2}$ this scores B0B0 but can uget M1M1 1 st M1 for an attempt to multiply by $\frac{3-\sqrt{2}}{3-\sqrt{2}}$ (o.e.) Allow poor use of brown	ackets
	 1st B1 for either surd simplified 2nd B1 for 7√2 or accept a = 7. Answer only scores B1B1 NB Common error is √32 + √18 = √50 = 5√2 this scores B0B0 but can uget M1M1 1st M1 for an attempt to multiply by 3-√2/3-√2 (o.e.) Allow poor use of brown dM1 for using a√2 to correctly obtain a numerator of the form p + q on non-zero integers. Allow arithmetic slips e.g. 21√2 - 28 or 3√2 Follow through their a = 7 or a new value found in (b). Ignore d 	ackets $\sqrt{2}$ where p and q are $\sqrt{2} \times \sqrt{2} = 3$
	 1st B1 for either surd simplified 2nd B1 for 7√2 or accept a = 7. Answer only scores B1B1 NB Common error is √32 + √18 = √50 = 5√2 this scores B0B0 but can uget M1M1 1st M1 for an attempt to multiply by 3-√2/3-√2 (o.e.) Allow poor use of brown dM1 for using a√2 to correctly obtain a numerator of the form p + q in non-zero integers. Allow arithmetic slips e.g. 21√2 - 28 or 3√2 	ackets $\sqrt{2}$ where p and q are $\sqrt{2} \times \sqrt{2} = 3$
	 1st B1 for either surd simplified 2nd B1 for 7√2 or accept a = 7. Answer only scores B1B1 NB Common error is √32 + √18 = √50 = 5√2 this scores B0B0 but can uget M1M1 1st M1 for an attempt to multiply by 3-√2/3-√2 (o.e.) Allow poor use of brown and dM1 for using a√2 to correctly obtain a numerator of the form p + quantity non-zero integers. Allow arithmetic slips e.g. 21√2 - 28 or 3 Follow through their a = 7 or a new value found in (b). Ignore dealers allow use of letter a. Dependent on 1st M1 	ackets $\sqrt{2}$ where p and q are $\sqrt{2} \times \sqrt{2} = 3$
(b)	 1st B1 for either surd simplified 2nd B1 for 7√2 or accept a = 7. Answer only scores B1B1 NB Common error is √32 + √18 = √50 = 5√2 this scores B0B0 but can uget M1M1 1st M1 for an attempt to multiply by 3-√2/3-√2 (o.e.) Allow poor use of brown and dM1 for using a√2 to correctly obtain a numerator of the form p + q in non-zero integers. Allow arithmetic slips e.g. 21√2 - 28 or 3√3 Follow through their a = 7 or a new value found in (b). Ignore deal Allow use of letter a. Dependent on 1st M1 So 3√32 - √64 + 3√8 - √36 is M0 until they reduce p + q√2 1st A1 for 3√2 or accept b = 3 from correct working 2nd A1 for -2 or accept c = -2 from correct working 	ackets $\sqrt{2}$ where p and q are $\sqrt{2} \times \sqrt{2} = 3$
	 1st B1 for either surd simplified 2nd B1 for 7√2 or accept a = 7. Answer only scores B1B1 NB Common error is √32 + √18 = √50 = 5√2 this scores B0B0 but can uget M1M1 1st M1 for an attempt to multiply by 3-√2/3-√2 (o.e.) Allow poor use of brown and dM1 for using a√2 to correctly obtain a numerator of the form p + q on non-zero integers. Allow arithmetic slips e.g. 21√2 - 28 or 3√3 Follow through their a = 7 or a new value found in (b). Ignore do Allow use of letter a. Dependent on 1st M1 So 3√32 - √64 + 3√8 - √36 is M0 until they reduce p + q√2 1st A1 for 3√2 or accept b = 3 from correct working 	ackets $\sqrt{2}$ where p and q are $\sqrt{2} \times \sqrt{2} = 3$ enominator.

Question Number	Scheme	Marks
(a)	$\left\{ (32)^{\frac{3}{5}} \right\} = \left(\sqrt[3]{32} \right)^3 \text{ or } \sqrt[3]{(32)^3} \text{ or } 2^3 \text{ or } \sqrt[3]{32768}$ $= 8$	M1 A1 [2]
(b)	$\left\{ \left(\frac{25x^4}{4} \right)^{-\frac{1}{2}} \right\} = \left(\frac{4}{25x^4} \right)^{\frac{1}{2}} \text{ or } \left(\frac{5x^2}{2} \right)^{-1} \text{ or } \frac{1}{\left(\frac{25x^4}{4} \right)^{\frac{1}{2}}}$ See notes below	M1
	$= \frac{2}{5x^2} \text{ or } \frac{2}{5}x^{-2}$ See notes for other alternatives	A1 [2]
	Notes	
(a)	M1: for a full correct interpretation of the fractional power. Note: $5 \times (32)^3$ is M0.	
•	A1: for 8 only. Note: Award M1A1 for writing down 8.	
(p)	M1: For use of $\frac{1}{2}$ OR use of -1	
	Use of $\frac{1}{2}$: Candidate needs to demonstrate the they have rooted all three elements in their bracket.	
	Use of -1: Either Candidate has $\frac{1}{\text{Bracket}}$ or $\left(\frac{Ax^{C}}{B}\right)$ becomes $\left(\frac{B}{Ax^{C}}\right)$.	
	Allow M1 for	
	• $\left(\frac{4}{25x^4}\right)^{\frac{1}{2}}$ or $\left(\frac{5x^2}{2}\right)^{-1}$ or $\frac{1}{\left(\frac{25x^4}{4}\right)^{\frac{1}{2}}}$ or $\sqrt{\left(\frac{4}{25x^4}\right)}$ or $\frac{1}{\sqrt{\left(\frac{25x^4}{4}\right)}}$ or $\left(\frac{\frac{1}{25x^4}}{\frac{1}{4}}\right)^{\frac{1}{2}}$ or $\frac{\frac{1}{5x^2}}{\frac{1}{2}}$	or $\frac{\frac{1}{5}x^{-2}}{\frac{1}{2}}$
	or $-\left(\frac{5x^2}{2}\right)$ or $\left(\frac{-5x^{-2}}{-2}\right)$ or $-\left(\frac{5x^{-2}}{2}\right)$ or $\frac{5x^{-2}}{2}$	
	• $\left(\frac{4}{25x^4}\right)^K$ or $\left(\frac{5x^2}{2}\right)^C$ where K , C are any powers including 1.	
	A1: for either $\frac{2}{5x^2}$ or $\frac{2}{5}x^{-2}$ or $0.4x^{-2}$ or $\frac{0.4}{x^2}$.	
	Note: $\left(\sqrt{\frac{25x^4}{4}}\right)^{-1}$ is not enough work by itself for the method mark.	
	Note: A final answer of $\frac{1}{\frac{5}{2}x^2}$ or $\frac{1}{2\frac{1}{2}x^2}$ or $\frac{1}{2.5x^2}$ is A0.	
	Note: Also allow $\pm \frac{2}{5x^2}$ or $\pm \frac{2}{5}x^{-2}$ or $\pm 0.4x^{-2}$ or $\pm \frac{0.4}{x^2}$ for A1.	

Question Number	Scheme	Marks
tunoci	$\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} = \frac{2}{\left(\sqrt{12}-\sqrt{8}\right)} \times \frac{\left(\sqrt{12}+\sqrt{8}\right)}{\left(\sqrt{12}+\sqrt{8}\right)}$ Writing this is sufficient for M1.	MI
	$= \frac{\left\{2\left(\sqrt{12} + \sqrt{8}\right)\right\}}{12 - 8}$ For $12 - 8$. This mark can be implied.	A1
	$= \frac{2(2\sqrt{3} + 2\sqrt{2})}{12 - 8}$	B1 B1
	$= \sqrt{3} + \sqrt{2}$	A1 cso
	Notes	
	M1: for a correct method to rationalise the denominator. 1^{st} A1: $(\sqrt{12} - \sqrt{8})(\sqrt{12} + \sqrt{8}) \rightarrow 12 - 8$ or $(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) \rightarrow 3 - 2$ 1^{st} B1: for $\sqrt{12} = 2\sqrt{3}$ or $\sqrt{48} = 4\sqrt{3}$ seen or implied in candidate's working.	
	2 nd B1: for $\sqrt{8} = 2\sqrt{2}$ or $\sqrt{48} = 4\sqrt{3}$ seen or implied in candidate's working.	
	2^{nd} A1: for $\sqrt{3} + \sqrt{2}$. Note: $\frac{\sqrt{3} + \sqrt{2}}{1}$ as a final answer is A0.	
	Note: The first accuracy mark is dependent on the first method mark being awarded.	
	Note: $\frac{1}{2}\sqrt{12} + \frac{1}{2}\sqrt{8} = \sqrt{3} + \sqrt{2}$ with no intermediate working implies the B1B1 marks.	
	Note: $\sqrt{12} = \sqrt{4}\sqrt{3}$ or $\sqrt{8} = \sqrt{4}\sqrt{2}$ are not sufficient for the B1 marks.	
	Note: A candidate who writes down (by misread) $\sqrt{18}$ for $\sqrt{8}$ can potentially obtain M1A0B the 2 nd B1 will be awarded for $\sqrt{18} = 3\sqrt{2}$ or $\sqrt{72} = 6\sqrt{2}$	IBIA0, whe
	Note: The final accuracy mark is for a correct solution only. Alternative 1 solution	
	$\left\{ \frac{2}{\sqrt{12} - \sqrt{8}} \right\} = \frac{2}{\left(2\sqrt{3} - 2\sqrt{2}\right)}$ B1 B1	
	$(\sqrt{3}-\sqrt{2})^{}(\sqrt{3}+\sqrt{2})$ places on	the relevant
	l mark orto	
	$= \frac{\left\{ \left(\sqrt{3} + \sqrt{2} \right) \right\}}{3 - 2}$ A1 for 3 – 2	
	$=\frac{\left\{\left(\sqrt{3}+\sqrt{2}\right)\right\}}{3-2}$ $=\sqrt{3}+\sqrt{2}$ A1 for 3-2 A1	
	$= \frac{\{(\sqrt{3} + \sqrt{2})\}}{3 - 2}$ A1 for 3 – 2	
	$=\frac{\left\{\left(\sqrt{3}+\sqrt{2}\right)\right\}}{3-2}$ $=\sqrt{3}+\sqrt{2}$ A1 for 3-2 A1	

Question Number	Scheme	Marks
	$x(1-4x^2)$ Accept $x(-4x^2+1)$ or $-x(4x^2-1)$ or $-x(-1+4x^2)$ or even $4x(\frac{1}{4}-x^2)$ or equivalent quadratic (or initial cubic) into two brackets $x(1-2x)(1+2x) \text{ or } -x(2x-1)(2x+1) \text{ or } x(2x-1)(-2x-1)$	B1 M1 A1
		3 marks
	Notes	
	B1: Takes out a factor of x or $-x$ or even $4x$. This line may be implied by correct final answer, it is shown it must be correct . So B0 for $x(1+4x^2)$ M1: Factorises the quadratic resulting from their first factorisation using usual rules (see note Principles). e.g. $x(1-4x)(x-1)$. Also allow attempts to factorise cubic such as $(x-2x^2)(1+N)$. B. Should not be completing the square here. A1: Accept either $x(1-2x)(1+2x)$ or $-x(2x-1)(2x+1)$ or $x(2x-1)(-2x-1)$. (No fraction answer)	1 in General 2x) etc
	Specific situations	
	Note: $x(1-4x^2)$ followed by $x(1-2x)^2$ scores B1M1A0 as factors follow quadratic factorisa And $x(1-4x^2)$ followed by $x(1-4x)(1+4x)$ B1M0A0.	tion criteria
	Answers with no working: Correct answer gets all three marks B1M1A1	
	: $x(2x-1)(2x+1)$ gets B0M1A0 if no working as $x(4x^2-1)$ would	d earn B0
	Poor bracketing: e.g. $(-1 + 4x^2) - x$ gets B0 unless subsequent work implies bracket round to case candidate may recover the mark by the following correct work.	

Question Number	Scheme	Marks
	$(8^{2x+3} = (2^3)^{2x+3}) = 2^{3(2x+3)}$ or 2^{ax+b} with $a = 6$ or $b = 9$	M1
	= 2^{6x+9} or = $2^{3(2x+3)}$ as final answer with no errors or $(y =)6x + 9$ or $3(2x + 3)$	A1 [2]
		2 marks
	Notes	
	M1: Uses $8 = 2^3$, and multiplies powers $3(2x + 3)$. Does not add powers. (Just $8 = 2^3$ or 8^3) A1: Either 2^{6x+9} or $2^{3(2x+3)}$ or $(y =)6x + 9$ or $3(2x + 3)$	$8^{\frac{1}{3}} = 2 \text{ is M0}$
	[- TAN SECTION OF THE SECTION OF T	
	Note: Examples: 2^{6x+3} scores M1A0 : $8^{2x+3} = (2^3)^{2x+3} = 2^{3+2x+3}$ gets M0A0	
	Note: Examples: 2 ^{6x+3} scores M1A0	
	Note: Examples: 2^{6x+3} scores M1A0 : $8^{2x+3} = (2^3)^{2x+3} = 2^{3+2x+3}$ gets M0A0	M1

Question Number	Scheme	Marks
(i)	$(5 - \sqrt{8})(1 + \sqrt{2})$ = 5 + 5 $\sqrt{2}$ - $\sqrt{8}$ - 4 = 5 + 5 $\sqrt{2}$ - 2 $\sqrt{2}$ - 4 = 1 + 3 $\sqrt{2}$	May 200 market and a constant
(ii)	Method 1	180 M1 . B1
	$= 4\sqrt{5} + 6\sqrt{5}$ $= \left(\frac{50\sqrt{5}}{5}\right)$ $= 10\sqrt{5}$ $= 4\sqrt{5} + 6\sqrt{5}$	A1 [3
Alternative for (i)	$(5-2\sqrt{2})(1+\sqrt{2})$ This earns the B1 n $=5+5\sqrt{2}-2\sqrt{2}-2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be or implied and may be simpl e.g. $=5+3\sqrt{2}-2\sqrt{4}$	seen M1
	For earlier use of $2\sqrt{2}$ = $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.	B1 A1 [3] 6 mark
	Notes	
(i) (ii)	M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct end may be implied by correct answer) – can appear as table B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}$	
	B1: (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20$ or $\sqrt{80}\sqrt{5} = 20$ at any Method 2. A1: $10\sqrt{5}$ or $c = 10$. N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A Those who multiply initial expression by $\sqrt{5}$ to obtain $\sqrt{400} + 30 = 20 + 30 = 50$ earn 1	las before

Question Number	Scheme	Notes	Marks
	$\frac{15}{\sqrt{3}} = \frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = 5\sqrt{3}$	M1: Attempts to multiply numerator and denominator by √3. This may be implied by a correct answer.	M1A1
	V2 V2 V2	A1: 5√3	
	$\sqrt{27} = 3\sqrt{3}$		В1
	$\frac{15}{\sqrt{3}} - \sqrt{27} = 2\sqrt{3}$		A1
	Correct answer	only scores full marks	
			[-
Way 2	$\frac{15}{\sqrt{3}} - \sqrt{27} = \frac{15 - \sqrt{81}}{\sqrt{3}} \left(= \frac{6}{\sqrt{3}} \right)$	Terms combined correctly with a common denominator (Need not be simplified)	B1
	$\frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{6\sqrt{3}}{3}$	M1: Attempts to multiply numerator and denominator by √3. This may be implied by a correct answer.	MIAI
	$\sqrt{3} \wedge \sqrt{3} = 3$	A1: $\frac{6\sqrt{3}}{3}$	MIAI
	$\frac{15}{\sqrt{3}} - \sqrt{27} = 2\sqrt{3}$		A1
			[-
	Note that $\frac{15}{\sqrt{3}} - \sqrt{27} = \frac{15\sqrt{3}}{3} - 3\sqrt{3} = \frac{15\sqrt{3}}{3} = \frac{15\sqrt{3}}$	$=15\sqrt{3}-9\sqrt{3}=6\sqrt{3}$ is quite common and	
	scores M1A0B1A0	(i.e. $5\sqrt{3}$ is never seen)	

Question Number	Scheme	Notes	Marks
(a)	$2^y = 8 \Rightarrow y = 3$	Cao (Can be implied i.e. by 2 ³)	B1
	(Alternative: Takes logs base 2: $\log_2 2^y =$	$\log_2 8 \Rightarrow y \log_2 2 = 3 \log_2 2 \Rightarrow y = 3)$	
			(1
(b)	$8 = 2^3$	Replaces 8 by 2 ³ (May be implied)	M1
	$4^{x+1} = (2^2)^{x+1}$ or $(2^{x+1})^2$	Replaces 4 by 2 ² correctly.	M1
	$2^{3x+2} = 2^3 \implies 3x + 2 = 3 \implies x = \frac{1}{3}$	M1: Adds their powers of 2 on the lhs and puts this equal to 3 leading to a solution for x.	M1A1
	3	A1: $x = \frac{1}{3}$ or $x = 0.3$ or awrt 0.333	
			(4
(b) Way 2	$4^{x+1} = 4 \times 4^x$	Obtains 4x+1 in terms of 4x correctly	M1
	$2^x \times 4^x = 8^x$	Combines their 2 ^x and 4 ^x correctly	M1
	$4 \times 8^x = 8 \Rightarrow 8^x = 2 \Rightarrow x = \frac{1}{3}$	M1: Solves $8^x = k$ leading to a solution for x .	M1A1
	3	A1: $x = \frac{1}{3}$ or $x = 0.3$ or awrt 0.333	
			[5

Question Number	Schem	e	Marks
	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(\sqrt{5}+1)}{(\sqrt{5}+1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	M1
	(Allow to multiply top and	bottom by $k(\sqrt{5}+1)$	
	= 4	Obtains a denominator of 4 or sight of $(\sqrt{5}-1)(\sqrt{5}+1)=4$	Aleso
	Note that M0A1 is not possible. The 4 m	nust come from a correct method.	
	$(7+\sqrt{5})(\sqrt{5}+1) = 7\sqrt{5}+5+7+\sqrt{5}$	An attempt to multiply the numerator by $(\pm\sqrt{5}\pm1)$ and get 4 terms with at least 2 correct for their $(\pm\sqrt{5}\pm1)$. (May be implied)	M1
	$3 + 2\sqrt{5}$	Answer as written or $a = 3$ and $b = 2$. (Allow $2\sqrt{5} + 3$)	Aleso
	Correct answer with no wor	king scores full marks	
			[
Way 2	$\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(-\sqrt{5}-1)}{(-\sqrt{5}-1)}$	Multiplies top and bottom by a correct expression. This statement is sufficient.	M1
	(Allow to multiply top and b	pottom by $k(-\sqrt{5}-1)$	
	=	Obtains a denominator of -4	Aleso
	$(7+\sqrt{5})(-\sqrt{5}-1) = -7\sqrt{5}-5-7-\sqrt{5}$	An attempt to multiply the numerator by $(\pm\sqrt{5}\pm1)$ and get 4 terms with at least 2 correct for their $(\pm\sqrt{5}\pm1)$. (May be implied)	M1
	$3 + 2\sqrt{5}$	Answer as written or $a = 3$ and $b = 2$	Aleso
	Correct answer with no wor	king scores full marks	
	Alternative using Simult	aneous Faustions	[
	$\frac{(7+\sqrt{5})}{\sqrt{5}-1} = a+b\sqrt{5} \Rightarrow 7+\sqrt{5}$ Multiplies and collects ration $a-b=1, 5b-$ Correct equation	$= (a-b)\sqrt{5} + 5b - a \text{ M1}$ nal and irrational parts $a = 7 \text{ A1}$ ations	
	a = 3, b = M1 for attempt to solve simultaneous ed		

Question Number	Scheme		Marks
(a)	A correct attempt to deal with the $\frac{1}{3}$ or the 5. $8^{\frac{1}{3}} = 2 \text{ or } 8^5 = 32768$ $8^{\frac{1}{3}} = \sqrt[3]{8} \text{ or } 8^5 = 8 \times 8 \times 8 \times 8 \times 8$	M1	
	$\left(8^{\frac{5}{3}} = \right) 32$	Cao	A1
	A correct answer with	no working scores full marks	
		Alternative ² = M1 (Deals with the 1/3) = 32 A1	
			(2
(b)	$\left(2x^{\frac{1}{2}}\right)^3 = 2^3x^{\frac{3}{2}}$	One correct power either 2^3 or $x^{\frac{3}{2}}$. $ \left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right) $ on its own is not sufficient for this mark.	M1
	$\frac{8x^{\frac{3}{2}}}{4x^2} = 2x^{-\frac{1}{2}} \text{ or } \frac{2}{\sqrt{x}}$	M1: Divides coefficients of x and subtracts their powers of x. Dependent on the previous M1	dM1A1
		A1: Correct answer	
	powers you would need to see e would score dM0 unless you see for th	windless that they have subtracted their evidence of subtraction. E.g. $\frac{8x^{\frac{3}{2}}}{4x^2} = 2x^{\frac{1}{2}}$ is some evidence that $3/2 - 2$ was intended the power of x . In that $\frac{\left(2x^{\frac{1}{2}}\right)^3}{4x^2} = \left(\frac{2x^{\frac{1}{2}}}{4x^2}\right)^3$ - this scores $0/3$	
	Note that there is a misconceptio	$\frac{1}{4x^2} = \left[\frac{2x^2}{4x^2}\right] - \text{this scores } 0/3$	(3

Question Number	Scheme	Marks	
	(a) $32^{\frac{1}{5}} = 2$	B1	(1)
	(b) For 2^{-2} or $\frac{1}{4}$ or $\left(\frac{1}{2}\right)^2$ or 0.25 as coefficient of x^k , for any value of k including $k = 0$	M1	
	Correct index for x so $A x^{-2}$ or $\frac{A}{x^2}$ o.e. for any value of A	B1	
	$=\frac{1}{4x^2}$ or $0.25x^{-2}$	A1 cao	(3)
		4 Marks	1

Notes

- (a) B1 Answer 2 must be in part (a) for this mark
- (b) Look at their final answer

M1 For 2^{-2} or $\frac{1}{4}$ or $\left(\frac{1}{2}\right)^2$ or 0.25 in their answer as coefficient of x^k for numerical value of k (including k = 0) so final answer $\frac{1}{4}$ is M1 B0 A0

B1 Ax^{-2} or $\frac{A}{x^2}$ or equivalent e.g. $Ax^{\frac{10}{5}}$ or $Ax^{\frac{50}{25}}$ i.e. correct power of x seen in final answer May have a bracket provided it is $(Ax)^{-2}$ or $\left(\frac{A}{x}\right)^2$

A1 $\frac{1}{4x^2}$ or $\frac{1}{4}x^{-2}$ or $0.25x^{-2}$ oe but must be correct power and coefficient combined correctly and must not be followed by a different wrong answer.

Poor bracketing: $2x^{-2}$ earns M0 B1 A0 as correct power of x is seen in this solution (They can recover if they follow this with $\frac{1}{4x^2}$ etc.)

Special case $(2x)^{-2}$ as a final answer and $\left(\frac{1}{2x}\right)^2$ can have M0 B1 A0 if the correct expanded answer is not seen The correct answer $\frac{1}{4x^2}$ etc. followed by $\left(\frac{1}{2x}\right)^2$ or $(2x)^{-2}$, treat $\frac{1}{4x^2}$ as final answer so M1 B1 A1 isw But the correct answer $\frac{1}{4x^2}$ etc clearly followed by the wrong $2x^{-2}$ or $4x^{-2}$, gets M1 B1 A0 do not ignore

subsequent wrong work here

Question Number	Scheme		Marks
	(a) $80 = 5 \times 16$ $\sqrt{80} = 4\sqrt{5}$		B1 (1)
	Method 1	Method 2	(2)
	(b) $\frac{\sqrt{80}}{\sqrt{5}+1}$ or $\frac{c\sqrt{5}}{\sqrt{5}+1}$	$(p+q\sqrt{5})(\sqrt{5}+1)=\sqrt{80}$	B1ft
	$= \frac{\sqrt{80}}{\sqrt{5} + 1} \times \frac{\sqrt{5} - 1}{\sqrt{5} - 1} \text{or} \frac{\sqrt{80}}{1 + \sqrt{5}} \times \frac{1 - \sqrt{5}}{1 - \sqrt{5}}$	$p\sqrt{5+q}\sqrt{5+p+5q} = 4\sqrt{5}$	M1
	$=\frac{20-4\sqrt{5}}{4}$ or $\frac{4\sqrt{5}-20}{-4}$	p + 5 q = 0 $p + q = 4$	A1
	$=5-\sqrt{5}$	p = 5, q = -1	Alcao
			(4) (5 marks)

Notes

(a) B1 Accept $4\sqrt{5}$ or c = 4 – no working necessary

(b) (Method 1)

B1ft Only ft on c See
$$\frac{\sqrt{80}}{\sqrt{5}+1}$$
 or $\frac{c\sqrt{5}}{\sqrt{5}+1}$

M1 State intention to multiply by $\sqrt{5} - 1$ or $1 - \sqrt{5}$ in the numerator and the denominator

A1 Obtain denominator of 4 (for $\sqrt{5}-1$) or -4 (for $1-\sqrt{5}$) or correct simplified numerator of $20-4\sqrt{5}$ or $4(5-\sqrt{5})$ or $4\sqrt{5}-20$ or $4(\sqrt{5}-5)$ So either numerator or denominator must be correct

A1 Correct answer only. Both numerator and denominator must have been correct and division of numerator and denominator by 4 has been performed.

Accept
$$p=5$$
, $q=-1$ or accept $5-\sqrt{5}$ or $-\sqrt{5}+5$ Also accept $5-1\sqrt{5}$

(Method 2)

B1ft Only ft on c $(p+q\sqrt{5})(\sqrt{5}+1)=\sqrt{80}$ or $c\sqrt{5}$

M1 Multiply out the lhs and replace $\sqrt{80}$ by $c\sqrt{5}$

A1 Compare rational and irrational parts to give p + q = 4, and p + 5q = 0

A1 Solve equations to give p = 5, q = -1

Common error:

$$\frac{\sqrt{80}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} = \frac{4\sqrt{5}-20}{4} = \sqrt{5}-5 \text{ gets B1 M1 A1 (for correct numerator - denominator is wrong for their product) then A0}$$

Correct answer with no working – send to review – have they used a calculator? Correct answer after trial and improvement with evidence that $(5 - \sqrt{5})(\sqrt{5} + 1) = \sqrt{80}$ could earn all four marks

Question Number	Scheme	Marks
	$25x - 9x^3 = x(25 - 9x^2)$	B1
	$(25-9x^2)=(5+3x)(5-3x)$	M1
	$25x - 9x^3 = x(5+3x)(5-3x)$	A1
		(3)

- B1 Take out a common factor, usually x, to produce $x(25-9x^2)$. Accept $(x\pm 0)(25-9x^2)$ or $-x(9x^2-25)$ Must be correct. Other possible options are $(5+3x)(5x-3x^2)$ or $(5-3x)(5x+3x^2)$
- M1 For factorising their quadratic term, usually $(25-9x^2)=(5+3x)(5-3x)$ Accept sign errors If $(5\pm 3x)$ has been taken out as a factor first, this is for an attempt to factorise $(5x\mp 3x^2)$
- A1 cao x(5+3x)(5-3x) or any equivalent with three factors e.g. x(5+3x)(-3x+5) or x(3x-5)(-3x-5) etc including -x(3x+5)(3x-5)isw if they go on to show that x = 0, $\pm \frac{5}{3}$

Question Number	Scheme	Marks
(a)	$81^{\frac{3}{2}} = (81^{\frac{1}{2}})^3 = 9^3$ or $81^{\frac{3}{2}} = (81^3)^{\frac{1}{2}} = (531441)^{\frac{1}{2}}$ =729	M1 A1
(b)	$(4x^{-\frac{1}{2}})^2 = 16x^{-\frac{2}{2}} \text{ or } \frac{16}{x}$ or equivalent	M1
	$x^2 (4x^{-\frac{1}{2}})^2 = 16x$	A1 (2) (4 marks)

- (a) M1 Dealing with either the 'cube' or the 'square root' first. A correct answer will imply this mark.

 Also accept a law of indices approach $81^{\frac{3}{2}} = 81^1 \times 81^{\frac{1}{2}} = 81 \times 9$ A1 Cao 729. Accept (±)729
- (b) M1 For correct use of power 2 on both 4 and the $x^{\frac{1}{2}}$ term.
 - A1 Cao = 16x

Question Number	Scheme	Marks
Method 1	$x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}}$ $\times \sqrt{2} \Rightarrow x\sqrt{16} + 10\sqrt{2} = 6x$ $4x + 10\sqrt{2} = 6x \Rightarrow 2x = 10\sqrt{2}$ $x = 5\sqrt{2}$ or $a = 5$ and $b = 2$	M1,A1 M1A1
Method 2	$x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}}$ $2\sqrt{2}x + 10 = 3\sqrt{2}x$ $\sqrt{2}x = 10 \Rightarrow x = \frac{10}{\sqrt{2}} = \frac{10\sqrt{2}}{2}, = 5\sqrt{2} \text{ oe}$	M1A1 M1,A1

Method 1

M1 For multiplying both sides by
$$\sqrt{2}$$
 – allow a slip e.g. $\sqrt{2}x\sqrt{8} + 10 = \frac{6x}{\sqrt{2}} \times \sqrt{2}$ or

$$\sqrt{2} \times 10 + x\sqrt{8} = \frac{6x}{\sqrt{2}} \times \sqrt{2}$$
, where one term has an error or the correct $\sqrt{2}(10 + x\sqrt{8}) = \frac{6x}{\sqrt{2}} \times \sqrt{2}$

NB
$$x\sqrt{8} + 10 = 6x\sqrt{2}$$
 is M0

A1 A correct equation in x with no fractional terms. Eg $x\sqrt{16} + 10\sqrt{2} = 6x$ oe.

M1 An attempt to solve their linear equation in x to produce an answer of the form $a\sqrt{2}$ or $a\sqrt{50}$

A1 $5\sqrt{2}$ oe (accept $1\sqrt{50}$)

Method 2

M1 For writing
$$\sqrt{8}$$
 as $2\sqrt{2}$ or $\frac{6}{\sqrt{2}}$ as $3\sqrt{2}$

A1 A correct equation in x with no fractional terms. Eg $2\sqrt{2}x + 10 = 3\sqrt{2}x$ or $x\sqrt{8} + 10 = 3\sqrt{2}x$ oe.

M1 An attempt to solve their linear equation in x to produce an answer of the form $a\sqrt{2}$ or $a\sqrt{50}$

$$\sqrt{2}x = 10 \Rightarrow x = \frac{10}{\sqrt{2}} = \frac{10\sqrt{2}}{2}, = 5\sqrt{2}$$

or
$$\sqrt{2}x = 10 \Rightarrow 2x^2 = 100 \Rightarrow x^2 = 50 \Rightarrow x = \sqrt{50}$$
 or $5\sqrt{2}$

A1 $5\sqrt{2}$ oe Accept $1\sqrt{50}$

Question Number		Scheme	Marks
(a)	20	Sight of 20. (4×5 is not sufficient)	B1
(b)	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}$	Multiplies top and bottom by a correct expression. This statement is sufficient. NB $2\sqrt{5} + 3\sqrt{2} = \sqrt{20} + \sqrt{18}$	(1) M1
	(Allow to multiply t	op and bottom by $k(2\sqrt{5}+3\sqrt{2})$	
	=2	Obtains a denominator of 2 or sight of $(2\sqrt{5} - 3\sqrt{2})(2\sqrt{5} + 3\sqrt{2}) = 2$ with no errors seen in this expansion. May be implied by $\frac{\dots}{2k}$	A1
		e. The 2 must come from a correct method.	
	없다고 있는 사람들은 경기 사용 사용에 가장 있는 사람들이 있다. 그리고 있는 사람들은 사람들이 있다면 보다면 보다.	ere is no need to consider the numerator. $\frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}} = {2} \text{ scores M1A1}$	
	Numerator = $\sqrt{2}(2\sqrt{5} \pm 3\sqrt{2}) = 2\sqrt{10} \pm 6$	An attempt to multiply the numerator by $\pm \left(2\sqrt{5}\pm 3\sqrt{2}\right)$ and obtain an expression of the form $p+q\sqrt{10}$ where p and q are integers. This may be implied by e.g. $2\sqrt{10}+3\sqrt{4}$ or by their final answer.	M1
	(Allow attempt to multiply the numerator by $k(2\sqrt{5}\pm 3\sqrt{2})$)		
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{2\sqrt{10} + 6}{2} = 3 + \sqrt{10}$	Cso. For the answer as written or $\sqrt{10} + 3$ or a statement that $a = 3$ and $b = 10$. Score when first seen and ignore any subsequent attempt to 'simplify'. Allow $1\sqrt{10}$ for $\sqrt{10}$	A1
		•	(4)
			(5 marks)

Alternative for (b)		2
$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{1}{\sqrt{10} - 3} \text{ or } \frac{2}{2\sqrt{10} - 3}$	M1: Divides or multiplies top and bottom by $ \frac{\sqrt{2}}{-6} = \frac{k}{k(\sqrt{10}-3)} $	M1A1
$= \frac{1}{\sqrt{10} - 3} \times \frac{\sqrt{10} + 3}{\sqrt{10} + 3}$	M1: Multiplies top and bottom by $\sqrt{10} + 3$	M1
$=3+\sqrt{10}$		A1

Question Number	Scheme	Notes	Marks
	9^{3x+1} = for example $3^{2(3x+1)}$ or $(3^2)^{3x+1}$ or $(3^{(3x+1)})^2$ or $3^{3x+1} \times 3^{3x+1}$ or $(3\times 3)^{3x+1}$ or $3^2 \times (3^2)^{3x}$ or $(9^{\frac{1}{2}})^y$ or $9^{\frac{1}{2}y}$ or $y = 2(3x+1)$	Expresses 9^{3x+1} correctly as a power of 3 or expresses 3^y correctly as a power of 9 or expresses y correctly in terms of x (This mark is <u>not</u> for just $3^2 = 9$)	M1
	$= 3^{6x+2}$ or $y = 6x + 2$ or $a = 6$, $b = 2$	Cao (isw if necessary)	A1
	Providing there is no incorrect work, allo Correct answer only i Special case: 3 ^{6x+1} on	mplies both marks	[2]
	Alternative t	Ising logs	[2]
	$9^{3x+1} = 3^y \implies \log 9^{3x+1} = \log 3^y$		
	$(3x+1)\log 9 = y\log 3$	Use power law correctly on both sides	M1
	$y = \frac{\log 9}{\log 3} (3x+1)$		
10	y = 6x + 2	cao	A1
			2 marks

Question Number	Scheme	Notes	Ma	rks
(a)	$\sqrt{50} - \sqrt{18} = 5\sqrt{2} - 3\sqrt{2}$	$\sqrt{50} = 5\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$ and the other term in the form $k\sqrt{2}$. This mark may be implied by the correct answer $2\sqrt{2}$	M1	
8	$= 2\sqrt{2}$	Or $a=2$	A1	
	- 2 4 2			[2]
(b) WAY 1	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where a is numeric. This is all that is required for this mark.	M1	
	$= \frac{12\sqrt{3}}{"2"\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{12\sqrt{6}}{4}$	Rationalises the denominator by a correct method e.g. multiplies numerator and denominator by $k\sqrt{2}$ to obtain a multiple of $\sqrt{6}$. Note that multiplying numerator and denominator by $2\sqrt{2}$ or $-2\sqrt{2}$ is quite common and is acceptable for this mark. May be implied by a correct answer. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6}$ or $b = 3$, $c = 6$	Cao and cso	A1	
9	3007000 00000 00000			[3]
WAY 2	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} \times \frac{\sqrt{50} + \sqrt{18}}{\sqrt{50} + \sqrt{18}}$ or $\frac{12\sqrt{3}}{5\sqrt{2} - 3\sqrt{2}} \times \frac{5\sqrt{2} + 3\sqrt{2}}{5\sqrt{2} + 3\sqrt{2}}$	For rationalising the denominator by a correct method i.e. multiplying numerator and denominator by $k(\sqrt{50} + \sqrt{18})$	M1	
	$\frac{60\sqrt{6} + 36\sqrt{6}}{50 - 18}$	For replacing numerator by $\alpha \sqrt{6} + \beta \sqrt{6}$. This is dependent on the first M1 and there is no need to consider the denominator for this mark.	dM1	
	$= 3\sqrt{6}$ or $b = 3$, $c = 6$	Cao and cso	A1	
	165a Mb			[3]
WAY 3	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where a is numeric. This is all that is required for this mark.	M1	
5	$=\frac{12\sqrt{3}}{2\sqrt{2}} = \frac{6\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{108}}{\sqrt{2}} = \sqrt{54} = \sqrt{9}\sqrt{6}$	Cancels to obtain a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1	
	$= 3\sqrt{6} \text{ Or } b = 3, c = 6$	Cao and cso	A1	
	H-000-			[3]
WAY 4	$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$	Uses part (a) by replacing denominator by their $a\sqrt{2}$ where a is numeric. This is all that is required for this mark.	M1	
	$\left(\frac{12\sqrt{3}}{n_2n_1/3}\right)^2 = \frac{432}{8}$			
8	$\sqrt{54} = \sqrt{9}\sqrt{6}$	Obtains a multiple of $\sqrt{6}$. This is dependent on the first M1.	dM1	
S 8	$= 3\sqrt{6} \text{ Or } b = 3, c = 6$	Cao and cso (do not allow $\pm 3\sqrt{6}$)	A1	
i) s			5 m	arks

Question Number	Scheme	Marks
(a)	Replaces 2^{2x+1} with $2^{2x} \times 2$ or states $2^{2x+1} = 2^{2x} \times 2$ or $2^{2x+1} = 2^{2x} \times 2$ or $2^{2x+1} = 2^{2x} \times 2$ or $2^{2x+1} = 2^{2x}$ or $2^{2x+1} = 2^{2x}$ or $2^{2x+1} = 2 \times 2^{2x} \times \sqrt{2}$ or $2^{2x+1} = (2^{2x+0.5})^2$.	M1
	Cso. Complete proof that includes explicit statements for the addition and power law of indices on 2^{2x+1} with no errors. The equation needs to be as printed including the "= 0". If they work backwards, they do not need to write down the printed answer first but must end with the version in 2^x including '= 0'.	A1*
	The following are examples of acceptable proofs.	
	$2^{2x+1} = (2^{x+0.5})^2 = (2^x \sqrt{2})^2 = (y\sqrt{2})^2 = 2y^2$	
	$\Rightarrow 2^{2x+1} - 17(2^x) + 8 = 2y^2 - 17y + 8 = 0$	
	$2y^2 = 2 \times 2^x \times 2^x = 2^{2x+1}$	
	$\Rightarrow 2^{2x+1} - 17(2^x) + 8 = 2y^2 - 17y + 8 = 0$	
	$2y^2 - 17y + 8 = 0 \Rightarrow 2(2^x)^2 - 17(2^x) + 8 = 0$	
	$\Rightarrow 2 \times 2^{2x} - 17(2^x) + 8 = 0 \Rightarrow 2^{2x+1} - 17(2^x) + 8 = 0$	
	$2^{2x+1} = 2 \times 2^{2x} \implies 2 \times 2^{2x} - 17(2^x) + 8 = 0$	
	$\Rightarrow 2y^2 - 17y + 8 = 0$	
	Scores M1A0 as $2^{2x} = (2^x)^2$ has not been shown explicitly	
	Special Case: $2^{2x+1} = 2^1 \times (2^x)^2 \text{ or } 2^{2x+1} = (2^x)^2 \times 2^1$	
	With or without the multiplication signs and with no subsequent explicit evidence of the power law scores M1A0	
	Example of insufficient working:	
	$2^{2x+1} = 2(2^x)^2 = 2y^2$	
1	scores no marks as neither rule has been shown explicitly.	(2)

or $2(2^{x})^{2} - 17(2^{x}) + 8 = 0 \Rightarrow (2(2^{x}) - 1)((2^{x}) - 8)(=0) \Rightarrow 2^{x} = \dots$ Solves the given quadratic either in terms of y or in terms of 2^{x} See General Principles for solving a 3 term quadratic Note that completing the square on e.g. $y^{2} - \frac{17}{2}y + 4 = 0$ requires $\left(y \pm \frac{17}{4}\right)^{2} \pm q \pm 4 = 0 \Rightarrow y = \dots$ $\left(y = \frac{1}{2}, 8 \text{ or } (2^{x} =)\frac{1}{2}, 8 \text{ Correct values} \right)$ M1: Either finds one correct value of x for their 2^{x} or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^{x} = k \Rightarrow x = \log_{2} k \text{ or } \frac{\log k}{\log 2}$ A1: $x = -1, 3$ only. Must be values of x. (4)	(b)	$2y^2 - 17y + 8 = 0 \Rightarrow (2$	$(y-1)(y-8)(=0) \Rightarrow y = \dots$	
Solves the given quadratic either in terms of y or in terms of 2^x See General Principles for solving a 3 term quadratic Note that completing the square on e.g. $y^2 - \frac{17}{2}y + 4 = 0$ requires $\left(y \pm \frac{17}{4}\right)^2 \pm q \pm 4 = 0 \Rightarrow y = \dots$ $\left(y = \frac{1}{2}, 8 \text{ or } (2^x = \frac{1}{2}, 8) \right)$ Correct values $\Rightarrow 2^x = \frac{1}{2}, 8 \Rightarrow x = -1, 3$ M1: Either finds one correct value of x for their 2^x or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^x = k \Rightarrow x = \log_2 k \text{ or } \frac{\log k}{\log 2}$ M1 A1 $\frac{1}{2^x = 1, 3 \text{ only. Must be values}}$ A1: $x = -1, 3 \text{ only. Must be values}$		or		
See General Principles for solving a 3 term quadratic Note that completing the square on e.g. $y^2 - \frac{17}{2}y + 4 = 0$ requires $\left(y \pm \frac{17}{4}\right)^2 \pm q \pm 4 = 0 \Rightarrow y = \dots$ $\left(y = \frac{1}{2}, 8 \text{ or } \left(2^x = \frac{1}{2}, 8\right) \right)$ Correct values M1 M1: Either finds one correct value of x for their 2^x or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^x = k \Rightarrow x = \log_2 k \text{ or } \frac{\log k}{\log 2}$ M1 A1 M1 A1 M1 A1		$2(2^x)^2 - 17(2^x) + 8 = 0 \Rightarrow (2(2^x) - 1)((2^x) - 8)(= 0) \Rightarrow 2^x =$		
$\left(y \pm \frac{17}{4}\right)^{2} \pm q \pm 4 = 0 \Rightarrow y = \dots$ $\left(y = \frac{1}{2}, 8 \text{ or } (2^{x} = \frac{1}{2}, 8) \right)$ Correct values $\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1, 3$ M1: Either finds one correct value of x for their 2^{x} or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^{x} = k \Rightarrow x = \log_{2} k \text{ or } \frac{\log k}{\log 2}$ A1: $x = -1, 3$ only. Must be values of x. (4)				M1
$(y =) \frac{1}{2}, 8 \text{ or } (2^{x} =) \frac{1}{2}, 8$ $\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1, 3$ Correct values $\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1, 3$ M1: Either finds one correct value of x for their 2^{x} or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^{x} = k \Rightarrow x = \log_{2} k \text{ or } \frac{\log k}{\log 2}$ A1: $x = -1, 3 \text{ only. Must be values of } x$. (4)		Note that completing the squa	re on e.g. $y^2 - \frac{17}{2}y + 4 = 0$ requires	
$\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1,3$ $M1: \text{ Either finds one correct value} $ of x for their 2^{x} or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^{x} = k \Rightarrow x = \log_{2} k \text{ or } \frac{\log k}{\log 2}$ $A1: x = -1, 3 \text{ only. Must be values} $ of x . (4)		$\left(y\pm\frac{17}{4}\right)^2\pm\epsilon$	$q \pm 4 = 0 \Rightarrow y = \dots$	
$\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1,3$ of x for their 2^{x} or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^{x} = k \Rightarrow x = \log_{2} k \text{ or } \frac{\log k}{\log 2}$ $A1: x = -1, 3 \text{ only. Must be values of } x.$ (4)		$(y=)\frac{1}{2},8$ or $(2^*=)\frac{1}{2},8$	Correct values	A1
of x. (4)		$\Rightarrow 2^x = \frac{1}{2}, 8 \Rightarrow x = -1, 3$	of x for their 2^x or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^x = k \Rightarrow x = \log_2 k \text{ or } \frac{\log k}{\log 2}$	M1 A1
				(4)
	-			(6 marks)