Algebraic Methods - Edexcel Past Exam Questions 2 MARK SCHEME | Question
number | Scheme | Marks | |--------------------|---|---| | (a) | $f(-2) = 2.(-2)^3 - 7.(-2)^2 - 10.(-2) + 24$ | MI | | | = 0 so $(x+2)$ is a factor | A1 (2 | | (b) | $f(x) = (x+2)(2x^2 - 11x + 12)$ | M1 A1 | | | f(x) = (x+2)(2x-3)(x-4) | dM1 A1 (4 | | | | 6 marks | | (b) | Note: Stating "hence factor" or "it is a factor" or a "√" (tick) or "QED" is conclusion. Note also that a conclusion can be implied from a <u>preamble</u>, eg: "If f (-2) factor" (Not just f(-2)=0) 1" M1: Attempts long division by correct factor or other method leading to (2x² ± ax ± b), a ≠ 0, b ≠ 0, even with a remainder. Working need not be done "by inspection." Or Alternative Method: 1" M1: Use (x+2)(ax² + bx+c) = 2x³ -7x² - expansion and comparison of coefficients to obtain a = 2 and to obtain val 1" A1: For seeing (2x² - 11x + 12). [Can be seen here in (b) after work done in the comparison of coefficients to obtain a = 2 and to obtain val 1" A1: Factorises quadratic. (see rule for factorising a quadratic). This is previous method mark being awarded and needs factors | 0 = 0, $(x + 2)$ is a so obtaining be seen as could be $10x + 24$ with lines for b and c lone in (a)] | | Question
Number | Scheme | | Marks | |--------------------|---|---|----------------| | (a) | Either (Way 1): Attempt f(3) or f(-3) | Or (Way 2): Assume $a = -9$ and attempt $f(3)$ or $f(-3)$ | M1 | | | $f(3) = 54 - 45 + 3a + 18 = 0 \Rightarrow 3a = -27 \Rightarrow a = -9*$ | f(3) = 0 so $(x - 3)$ is factor | A1 * cso | | | Or (Way 3): $(2x^3 - 5x^2 + ax + 18) \div (x - 3) = 2x^2 + px + q$ where p is a number and q is an expression in terms of a | | M1 | | | Sets the remainder $18+3a+9=0$ and solves to give $a=-9$ | | A1* cso
(2) | | (b) | Either (Way 1): $f(x) = (x - 3)(2x^2 + x - 6)$ | | M1A1 | | | Either (Way 1): $f(x) = (x-3)(2x^2 + x - 6)$
= $(x-3)(2x-3)(x+2)$ | | M1A1 | | | | | (4 | | | Or (Way 2) Uses trial or factor theorem to obtain $x = -2$ or $x = 3/2$ | | M1 | | | Uses trial or factor theorem to obtain both $x = -2$ and $x = 3/2$ | | A1 | | | Puts three factors together (see notes below) | | M1 | | | Correct factorisation : $(x-3)(2x-3)(x+2)$ or $(3-x)(3-2x)(x+2)$ or | | A1 | | | $2(x-3)(x-\frac{3}{2})(x+2)$ oe | | (4 | | | Or (Way 3) No working three factors $(x-3)(2x-3)(x-3)$ | + 2) otherwise need working | MIAIMIAI | | Question
Number | Scheme | | Marks | |--------------------|--|---|---------| | | If there is no labelling, ma | ark (a) and (b) in that order | | | | $f(x) = 2x^3 -$ | $-7x^2 + 4x + 4$ | | | | $f(2) = 2(2)^3 - 7(2)^2 + 4(2) + 4$ | Attempts f(2) or f(-2) | M1 | | (a) | = 0, and so $(x-2)$ is a factor. | $f(2) = 0$ with no sign or substitution errors $(2(2)^3 - 7(2)^2 + 4(2) + 4 = 0)$ is sufficient) and for conclusion. Stating "hence factor" or "it is a factor" or a "tick" or "QED" or "no remainder" or "as required" are fine for the conclusion but not = 0 just underlined and not hence (2 or $f(2)$) is a factor. Note also that a conclusion can be implied from a preamble, eg: "If $f(2) = 0$, $(x - 2)$ is a factor" | A1 | | | Note: Long division scores no marks in part (a). The <u>factor theorem</u> is required. M1: Attempts long division by $(x-2)$ or other method using $(x-2)$, to obtain | [2 | | | | $f(x) = \{(x-2)\}(2x^2 - 3x - 2)$ | $(2x^2 \pm ax \pm b)$, $a \neq 0$, even with a remainder.
Working need not be seen as this could be done "by inspection." | M1 A1 | | (ъ) | $= (x-2)(x-2)(2x+1)\operatorname{or}(x-2)^{2}(2x+1)$ or equivalent e.g. $= 2(x-2)(x-2)(x+\frac{1}{2})\operatorname{or}2(x-2)^{2}(x+\frac{1}{2})$ | A1: $(2x^2 - 3x - 2)$
dM1: Factorises a 3 term quadratic. (see rule
for factorising a quadratic in the General
Principles for Core Maths Marking). This is
dependent on the previous method mark being
awarded but there must have been no
remainder. Allow an attempt to solve the
quadratic to determine the factors. | dM1 A1 | | | | Al: cao – needs all three factors on one line.
Ignore following work (such as a solution to a
quadratic equation.) | | | | Note = $(x-2)(\frac{1}{2}x-1)(4x+2)$ would lose the last mark as it is not fully factorised | | | | | | ly award full marks in (b) | | | | | | [4 | | | | | Total (| | Question
Number | Scheme | | Marks | |--------------------|---|--|-------| | | $f(x) = -4x^3 + ax^2 + 9x - 18$ | | | | (a) | f(2) = -32 + 4a + 18 - 18 = 0 | Attempts f(2) or f(-2) | M1 | | (a) | $\Rightarrow 4a = 32 \Rightarrow a = 8$ | cso | A1 | | | | | [| | | $f(x) = (x-2)(px^2 + qx + r)$ | | | | | $= px^3 + (q-2p)x^2 + (r-2q)x - 2r$ | | | | Way 2 | $r = 9 \Rightarrow q = 0$ also $p = -4$: $a = -2p = 8$ | Compares coefficients leading to $-2p = a$ | M1 | | | a = 8 | eso | A1 | | | $(-4x^3 + ax^2 + 9x - 18) + (x - 2)$ | | | | (a)
Way 3 | $Q = -4x^{2} + (a-8)x + 2a - 7$ $R = 4a - 32$ | Attempt to divide $\pm f(x)$ by $(x - 2)$ to give a quotient at least of the form $\pm 4x^2 + g(a)x$ and a remainder that is a function of a | M1 | | | $4a - 32 = 0 \Rightarrow a = 8$ | eso | A1 | | | $f(x) = (x - 2)(-4x^2 + 9)$ | Attempts long division or other method, to obtain $(-4x^2 \pm ax \pm b)$, $b \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection." | MI | | (b) | = (x-2)(3-2x)(3+2x) | dM1: A valid attempt to
factorise their quadratic – see
General Principles. This is
dependent on the previous | | | | or equivalent e.g.
= $-(x-2)(2x-3)(2x+3)$ | but there must have been no remainder. | dM1A1 | |--------------|---|--|---------| | | or $=(x-2)(2x-3)(-2x-3)$ | A1: cao – must have all 3
factors on the same line. Ignore
subsequent work (such as a
solution to a quadratic
equation.) | | | | | 40 | [3] | | | $f\left(\frac{1}{2}\right) = -4\left(\frac{1}{8}\right) + 8\left(\frac{1}{4}\right) + 9\left(\frac{1}{2}\right) - 18 = -12$ | Attempts $f(\frac{1}{2})$ or $f(-\frac{1}{2})$ | | | (c) | | Allow A1ft for the correct numerical value of $\frac{\text{their } a}{4} - 14$ | M1A1ft | | | | | [2] | | | $\pm (-4x^3 + 8x^2 + 9x - 18) \div (2x - 1)$ | | | | (c)
Way 2 | $Q = -2x^2 + 3x + 6$ | M1: Attempt long division to give a remainder that is independent of x | MlAlft | | , 2 | R=-12 | A1: Allow A1ft for the correct numerical value of $\frac{\text{their } a}{4} - 14$. | MIAIN | | | | | Total 7 | | Question
Number | | Scheme | Marks | |---------------------------|------------------------------------|--|-------| | | $f(-2) = 6(-2)^3 + 13(-2)^2 - 4$ | Attempts f(-2). | M1 | | (a) | = 0, and so $(x + 2)$ is a factor. | f(-2) = 0 with no sign or substitution errors
and for conclusion. | A1 | | | | | [2] | | (b) | $f(x) = \{(x+2)\}(6x^2 + x - 2)$ | | M1 A1 | | (b) $= (x+2)(2x-1)(3x+2)$ | =(x+2)(2x-1)(3x+2) | | M1 A1 | | | | [4] | | | Question
Number | Scheme | Marks | |--------------------|---|-----------------| | (a) | Attempt f(3) or f(-3) Use of long division is M0A0 as factor theorem was required. | M1 | | | f(-3) = 162 - 63 - 120 + 21 = 0 so $(x + 3)$ is a factor | A1 | | | | (2) | | (b) | Either (Way 1): $f(x) = (x + 3)(-6x^2 + 11x + 7)$ | M1A1 | | | =(x+3)(-3x+7)(2x+1) or $-(x+3)(3x-7)(2x+1)$ | M1A1 | | | (442) (544) NG-2002, Sprin (45) (50) (50) (50) | (4) | | | Or (Way 2) Uses trial or factor theorem to obtain $x = -1/2$ or $x = 7/3$ | M1 | | | Uses trial or factor theorem to obtain both $x = -1/2$ and $x = 7/3$ | A1 | | | Puts three factors together (see notes below) | M1 | | | Correct factorisation: $(x+3)(7-3x)(2x+1)$ or $-(x+3)(3x-7)(2x+1)$ oe | A1 (4) | | | Or (Way 3) No working three factors $(x + 3)(-3x + 7)(2x + 1)$ otherwise need working | MIAIMIAI
(4) |