

1.

Straight line graphs 2 - Edexcel Past Exam Questions

Figure 1

The line l_1 has equation 2x - 3y + 12 = 0.

(a) Find the gradient of l_1 .	(1)
----------------------------------	-----

The line l_1 crosses the *x*-axis at the point *A* and the *y*-axis at the point *B*, as shown in Figure 1. The line l_2 is perpendicular to l_1 and passes through *B*. (b) Find an equation of l_2 . (3)

The line l_2 crosses the x-axis at the point C.

(c)	Find the area of triangle <i>ABC</i> .	(4)

Jan 12 Q6

(1)

2. The line L_1 has equation 4y + 3 = 2x.

The point A(p, 4) lies on L_1 .

(*a*) Find the value of the constant *p*.

The line L_2 passes through the point C(2, 4) and is perpendicular to L_1 .

(b) Find an equation for L_2 giving your answer in the form ax + by + c = 0, where a, b and c are integers. (5)

The line L_1 and the line L_2 intersect at the point D.

- (c) Find the coordinates of the point D. (3)
- (d) Show that the length of CD is $\frac{3}{2}\sqrt{5}$. (3)

A point *B* lies on L_1 and the length of $AB = \sqrt{80}$.

The point *E* lies on L_2 such that the length of the line CDE = 3 times the length of *CD*.

- (e) Find the area of the quadrilateral *ACBE*. (3) June 12 Q9
- 3. The line l_1 has equation y = -2x + 3.

The line l_2 is perpendicular to l_1 and passes through the point (5, 6).

(a) Find an equation for l_2 in the form ax + by + c = 0, where a, b and c are integers. (3)

The line l_2 crosses the x-axis at the point A and the y-axis at the point B.

(b) Find the x-coordinate of A and the y-coordinate of B. (2)

Given that *O* is the origin,

(c) find the area of the triangle OAB. (2)

Jan 13 Q5

- 4. The straight line L_1 passes through the points (-1, 3) and (11, 12).
 - (a) Find an equation for L_1 in the form ax + by + c = 0, where a, b and c are integers. (4)

The line L_2 has equation 3y + 4x - 30 = 0.

- (b) Find the coordinates of the point of intersection of L_1 and L_2 . (3) June 13 Q6
- 5. The line L_1 has equation 4x + 2y 3 = 0.

June	13 (R) Q4
(b) Find the equation of L_2 in the form $y = mx + c$, where m and c are constants.	(3)
The line L_2 is perpendicular to L_1 and passes through the point (2, 5).	
(a) Find the gradient of L_1 .	(2)

The line l_1 , shown in Figure 2 has equation 2x + 3y = 26.

The line l_2 passes through the origin *O* and is perpendicular to l_1 .

(a) Find an equation for the line l_2 .

The line l_2 intersects the line l_1 at the point *C*. Line l_1 crosses the *y*-axis at the point *B* as shown in Figure 2.

(b) Find the area of triangle OBC. Give your answer in the form ^a/_b, where a and b are integers to be determined.
 (6) June 14 Q9

(4)

(3)

Figure 2

Figure 2 shows a right angled triangle *LMN*.

The points L and M have coordinates (-1, 2) and (7, -4) respectively.

(a) Find an equation for the straight line passing through the points L and M.
Give your answer in the form ax + by + c = 0, where a, b and c are integers. (4)

Given that the coordinates of point *N* are (16, *p*), where *p* is a constant, and angle $LMN = 90^{\circ}$,

(b) find the value of p.

Given that there is a point K such that the points L, M, N, and K form a rectangle,

(<i>c</i>)	find the <i>y</i> coordinate of <i>K</i> .	(2)
		June 14(R) Q7

7.

(3)

8. The curve C has equation $y = \frac{1}{3}x^2 + 8$.

The line *L* has equation y = 3x + k, where *k* is a positive constant.

(a) Sketch C and L on separate diagrams, showing the coordinates of the points at which C and L cut the axes.(4)

Given that line L is a tangent to C,

- (b) find the value of k. (5) June 14(R) Q9
- 9. (a) Factorise completely $9x 4x^3$.
 - (b) Sketch the curve C with equation

$$y = 9x - 4x^3.$$

Show on your sketch the coordinates at which the curve meets the *x*-axis. (3)

The points A and B lie on C and have x coordinates of -2 and 1 respectively.

(c) S	Show that the length of <i>AB</i> is $k\sqrt{10}$, where <i>k</i> is a constant to be found.	(4)
		June 15 Q8

The points P(0, 2) and Q(3, 7) lie on the line l_1 , as shown in Figure 2.

The line l_2 is perpendicular to l_1 , passes through Q and crosses the x-axis at the point R, as shown in Figure 2.

Find

(<i>a</i>)	an equation for l_2 , giving your answer in the form $ax + by + c = 0$, where <i>a</i> integers,	<i>a</i> , <i>b</i> and <i>c</i> are (5)
(<i>b</i>)	the exact coordinates of <i>R</i> ,	(2)
(c)	the exact area of the quadrilateral ORQP, where O is the origin.	(5) June 16 Q10

10.