Straight line graphs 2 - Edexcel Past Exam Questions

1.

Figure 1
The line l_{1} has equation $2 x-3 y+12=0$.
(a) Find the gradient of l_{1}.

The line l_{1} crosses the x-axis at the point A and the y-axis at the point B, as shown in Figure 1.
The line l_{2} is perpendicular to l_{1} and passes through B.
(b) Find an equation of l_{2}.

The line l_{2} crosses the x-axis at the point C.
(c) Find the area of triangle $A B C$.
2. The line L_{1} has equation $4 y+3=2 x$.

The point $A(p, 4)$ lies on L_{1}.
(a) Find the value of the constant p.

The line L_{2} passes through the point $C(2,4)$ and is perpendicular to L_{1}.
(b) Find an equation for L_{2} giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The line L_{1} and the line L_{2} intersect at the point D.
(c) Find the coordinates of the point D.
(d) Show that the length of $C D$ is $\frac{3}{2} \sqrt{ } 5$.

A point B lies on L_{1} and the length of $A B=\sqrt{ } 80$.
The point E lies on L_{2} such that the length of the line $C D E=3$ times the length of $C D$.
(e) Find the area of the quadrilateral $A C B E$.
3. The line l_{1} has equation $y=-2 x+3$.

The line l_{2} is perpendicular to l_{1} and passes through the point $(5,6)$.
(a) Find an equation for l_{2} in the form $a x+b y+c=0$, where a, b and c are integers.

The line l_{2} crosses the x-axis at the point A and the y-axis at the point B.
(b) Find the x-coordinate of A and the y-coordinate of B.

Given that O is the origin,
(c) find the area of the triangle $O A B$.
4. The straight line L_{1} passes through the points $(-1,3)$ and $(11,12)$.
(a) Find an equation for L_{1} in the form $a x+b y+c=0$, where a, b and c are integers.

The line L_{2} has equation $3 y+4 x-30=0$.
(b) Find the coordinates of the point of intersection of L_{1} and L_{2}.
5. The line L_{1} has equation $4 x+2 y-3=0$.
(a) Find the gradient of L_{1}.

The line L_{2} is perpendicular to L_{1} and passes through the point $(2,5)$.
(b) Find the equation of L_{2} in the form $y=m x+c$, where m and c are constants.
6.

Figure 2
The line l_{1}, shown in Figure 2 has equation $2 x+3 y=26$.
The line l_{2} passes through the origin O and is perpendicular to l_{1}.
(a) Find an equation for the line l_{2}.

The line l_{2} intersects the line l_{1} at the point C. Line l_{1} crosses the y-axis at the point B as shown in Figure 2.
(b) Find the area of triangle $O B C$. Give your answer in the form $\frac{a}{b}$, where a and b are integers to be determined.
7.

Figure 2
Figure 2 shows a right angled triangle $L M N$.
The points L and M have coordinates $(-1,2)$ and $(7,-4)$ respectively.
(a) Find an equation for the straight line passing through the points L and M.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Given that the coordinates of point N are $(16, p)$, where p is a constant, and angle $L M N=90^{\circ}$,
(b) find the value of p.

Given that there is a point K such that the points L, M, N, and K form a rectangle,
(c) find the y coordinate of K.
8. The curve C has equation $y=\frac{1}{3} x^{2}+8$.

The line L has equation $y=3 x+k$, where k is a positive constant.
(a) Sketch C and L on separate diagrams, showing the coordinates of the points at which C and L cut the axes.

Given that line L is a tangent to C,
(b) find the value of k.
9. (a) Factorise completely $9 x-4 x^{3}$.
(b) Sketch the curve C with equation

$$
\begin{equation*}
y=9 x-4 x^{3} . \tag{3}
\end{equation*}
$$

Show on your sketch the coordinates at which the curve meets the x-axis.

The points A and B lie on C and have x coordinates of -2 and 1 respectively.
(c) Show that the length of $A B$ is $k \sqrt{ } 10$, where k is a constant to be found.
10.

Figure 2
The points $P(0,2)$ and $Q(3,7)$ lie on the line l_{1}, as shown in Figure 2.
The line l_{2} is perpendicular to l_{1}, passes through Q and crosses the x-axis at the point R, as shown in Figure 2.

Find
(a) an equation for l_{2}, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers,
(b) the exact coordinates of R,
(c) the exact area of the quadrilateral $O R Q P$, where O is the origin.

