Circles - Edexcel Past Exam Questions 2 MARK SCHEME | Question
number | Scheme | Marks | | |-----------------------|--|----------|--| | | The equation of the circle is $(x+1)^2 + (y-7)^2 = (r^2)$ | M1 A1 | | | | The radius of the circle is $\sqrt{(-1)^2 + 7^2} = \sqrt{50}$ or $5\sqrt{2}$ or $r^2 = 50$ | M1 | | | | So $(x+1)^2 + (y-7)^2 = 50$ or equivalent | A1 (4) | | | | | 4 | | | Notes | M1 is for this expression on left hand side—allow errors in sign of 1 and 7. A1 correct signs (just LHS) M1 is for Pythagoras or substitution into equation of circle to give r or r² | | | | | Giving this value as diameter is M0 A1, cao for cartesian equation with numerical values but allow (√50) ² or (5√2 equivalent A correct answer implies a correct method – so answer given with no working earmarks for this question. | | | | Alternative
method | Equation of circle is $x^2 + y^2 \pm 2x \pm 14y + c = 0$ | M1 | | | | Equation of circle is $x^2 + y^2 + 2x - 14y + c = 0$ | A1 | | | | Uses (0,0) to give $c = 0$, or finds $r = \sqrt{(-1)^2 + 7^2} = \sqrt{50}$ or $5\sqrt{2}$ or $r^2 = 50$
So $x^2 + y^2 + 2x - 14y = 0$ or equivalent | M1
A1 | | | Question
number | Scheme | | |--------------------|---|----------| | | Obtain $(x \pm 10)^2$ and $(y \pm 8)^2$ | M1 | | (a) | Obtain $(x-10)^2$ and $(y-8)^2$ | A1 | | | Centre is (10, 8). N.B. This may be indicated on diagram only as (10, 8) | AI (S | | (b) | See $(x \pm 10)^2 + (y \pm 8)^2 = 25 (= r^2)$ or $(r^2 =) 100 + 64 - 139$ | M1 | | | r = 5 * (this is a printed answer so need one of the above two reasons) | A1 (2 | | (c) | Use $x = 13$ in either form of equation of circle and solve resulting quadratic to give $y =$ | М1 | | | e.g $x = 13 \Rightarrow (13-10)^2 + (y-8)^2 = 25 \Rightarrow (y-8)^2 = 16$
or $13^2 + y^2 - 20 \times 13 - 16y + 139 = 0 \Rightarrow y^2 - 16y + 48 = 0$ | | | | or $13^2 + y^2 - 20 \times 13 - 16y + 139 = 0 \Rightarrow y^2 - 16y + 48 = 0$ so $y = $ | 800A W47 | | | v = 4 or 12 (on EPEN mark one correct value as A1A0 and both correct as A1A1) | A1, A1 | | Alternatives | Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ | M1 | |--------------|--|--------------| | (a) | Centre is $(-g, -f)$, and so centre is $(10, 8)$. | A1, A1 | | OR | Method 3: Use any value of y to give two points (L and M) on circle. x co-ordinate of mid point of LM is "10" and Use any value of x to give two points (P and Q) on circle. y co-ordinate of mid point of PQ is "8" (Centre – chord theorem). (10,8) is M1A1A1 | M1
A1 A1 | | (b) | Method 2: Using $\sqrt{g^2 + f^2 - c}$ or $(r^2 =) *100" + *64" - 139$
r = 5 | M1
A1 | | OR | Method 3: Use point on circle with centre to find radius. Eg $\sqrt{(13-10)^2+(12-8)^2}$
r=5 * | M1
A1 cao | | (c) | Divide triangle PTQ and use Pythagoras with $r^2 - (13 - "10")^2 = h^2$, then evaluate "8 $\pm h$ " - (N.B. Could use 3,4,5 Triangle and 8 ± 4). Accuracy as before | M1 | | Notes | Mark (a) and (b) together | | | (a) | M1 as in scheme and can be $\underline{implied}$ by $(\pm 10, \pm 8)$. Correct centre (10, 8) $\underline{implies}$ M1. | AIAI | | (b) | M1 for a correct method leading to $r =$, or $r^2 = "100" + "64" - 139$ (not $139 - "10$) or for using equation of circle in $(x \pm 10)^2 + (y \pm 8)^2 = k^2$ form to identify $r = x^2 + x^2$ | 9 995
 | | | 3 rd A1 r = 5 (NB This is a given answer so should follow k^2 = 25 or r^2 = 100 + 64 – Special case: if centre is given as (-10, -8) or (10, -8) or (-10, 8) allow M1A1 for r = 5 wo as r^2 = 100 + 64 – 139 | | | Question
Number | Sch | eme | Marks | |--------------------|---|--|-------| | | | | | | (a) | | | | | (i) | The centre is at (10, 12) | B1: $x = 10$ | B1 B1 | | (1) | The centre is at (10, 12) | B1: y = 12 | BIBI | | | | | | | (ii) | Uses $(x-10)^2 + (y-12)^2 = -195 + 100 + 144 \Rightarrow r =$ | | M1 | | | Completes the square for both x and y in an attempt to find r . | | | | | | $a^2 \pm b$ and $a + 195 = 0, (a, b \neq 0)$ | | | | Allow errors in obtaining the | ir r ² but must find square root | | | | | A correct numerical expression for r | | | | $r = \sqrt{10^2 + 12^2 - 195}$ | including the square root and can | A1 | | | - | implied by a correct value for r | | | | r = 7 | Not $r = \pm 7$ unless -7 is rejected | A1 | | | 0 1 : : :: :: | | (5) | | | Compares the given equation with | B1: $x = 10$ | | | (a) | $x^{2} + y^{2} + 2gx + 2fy + c = 0$ to write | B1: y = 12 | B1B1 | | Way 2 | down centre $(-g, -f)$ i.e. $(10, 12)$ | B1: y - 12 | | | | Uses $r = \sqrt{(\pm "10")^2 + (\pm "12")^2 - c}$ | | M1 | | | $r = \sqrt{10^2 + 12^2 - 195}$ | A correct numerical expression for r | A1 | | | r = 7 | | A1 | | | | | (5) | | a) | 101 (25 man ² (22 man ² | CtCDtl | M1 | | (b) | $MN = \sqrt{(25 - "10")^2 + (32 - "12")^2}$ | Correct use of Pythagoras | M1 | | | $MN(=\sqrt{625})=25$ | | A1 | | | | | (2) | | (c) | $NP = \sqrt{("25"^2 - "7"^2)}$ | $NP = \sqrt{(MN^2 - r^2)}$ | M1 | | (c) | 147 - V(25 - 7) | $NF = \sqrt{(NLV - I)}$ | 1711 | | | $NP(=\sqrt{576}) = 24$ | | A1 | | | | | (2) | | (c)
Way 2 | $\cos(NMP) = \frac{7}{"25"} \Rightarrow NP = "25" \sin(1)$ | NMP) Correct strategy for finding NP | M1 | | way 2 | NP = 24 | () () () () () () () () () () | A1 | | | | | (2) | | | | | [9] | Question
Number | Scheme | Marks | |--------------------------|--|--------------------| | (a) | Equation of form $(x \pm 5)^2 + (y \pm 9)^2 = k$, $k > 0$
Equation of form $(x - a)^2 + (y - b)^2 = 5^2$, with values for a and b
$(x + 5)^2 + (y - 9)^2 = 25 = 5^2$
P(8, -7). Let centre of circle $= X(-5, 9)$ | M1
M1
A1 | | (b) | $PX^2 = (85)^2 + (-7 - 9)^2$ or $PX = \sqrt{(8 - 5)^2 + (-7 - 9)^2}$ | M1 | | | $(PX = \sqrt{425} \text{ or } 5\sqrt{17})$ $PT^2 = (PX)^2 - 5^2 \text{ with numerical } PX$ | dM1 | | | $PT \left\{ = \sqrt{400} \right\} = 20$ (allow 20.0) | A1 cso | | Alternative | | [6 | | 2 for (a) | Equation of the form $x^2 + y^2 \pm 10x \pm 18y + c = 0$ | M1 | | | Uses $a^2 + b^2 - 5^2 = c$ with their a and b or substitutes (0, 9) giving $+9^2 \pm 2b \times 9 + c = 0$
$x^2 + y^2 + 10x - 18y + 81 = 0$ | M1
A1
(3) | | Alternative
2 for (b) | An attempt to find the point T may result in pages of algebra, but solution needs to reach (-8, 5) or $\left(\frac{-8}{17}, 11\frac{2}{17}\right)$ to get first M1 (even if gradient is found first) M1: Use either of the correct points with $P(8, -7)$ and distance between two points formula A1: 20 | M1
dM1
A1cso | | Alternative | Substitutes (8, -7) into circle equation so $PT^2 = 8^2 + (-7)^2 + 10 \times 8 - 18 \times (-7) + 81$ | M1 | | 3 for (b) | Square roots to give $PT = \sqrt{400} = 20$ | dM1A1
(3 | | | Notes for Question | 00000 | | (a)
(b) | The three marks in (a) each require a circle equation – (see special cases which are no M1: Uses coordinates of centre to obtain LHS of circle equation (RHS must be r^2 or $k > 0$ positive value) M1: Uses $r = 5$ to obtain RHS of circle equation as 25 or -5^2 A1: correct circle equation in any equivalent form Special cases $(x \pm 5)^2 + (x \pm 9)^2 = (5^2)$ is not a circle equation so M0M0A0 Also $(x \pm 5)^2 + (y - 9) = (5^2)$ And $(x \pm 5)^2 - (y \pm 9)^2 = (5^2)$ are not circles and gain M0M But $(x - 0)^2 + (y - 9)^2 = 5^2$ gains M0M1A0 M1: Attempts to find distance from their centre of circle to P (or square of this value). If t called PT and given as answer this is M0. Solution may use letter other than X , as centre w | OAO
this is | | | labelled in the question. N.B. Distance from (0, 9) to (8, -7) is incorrect method and is M0, followed by M0A0. dM1: Applies the subtraction form of Pythagoras to find PT or PT ² (depends on previous mark for distance from centre to P) or uses appropriate complete method involving trigonomy. A1: 20 cso | method | | Question
Number | Scheme | Marks | |--------------------|--|-------------| | | Mark (a) and (b) together | | | (a) | Uses the addition form of Pythagoras on $6\sqrt{5}$ and 4. Condone missing brackets on $(6\sqrt{5})^2 + 4^2$ or $OQ = \sqrt{(6\sqrt{5})^2 + 4^2}$ {= 14} (Working or 14 may be seen on the diagram) | M1 | | | $y_Q = \sqrt{(\text{their } OQ)^2 - 11^2}$
$y_Q = \sqrt{(\text{their } OQ)^2 - 11^2}$
Must include $\sqrt{\text{and is dependent on}}$
the first M1 and requires OQ > 11 | dM1 | | 8 | $=\sqrt{75} \text{ or } 5\sqrt{3}$ $\sqrt{75} \text{ or } 5\sqrt{3}$ | Alcso | | 8 | | [3 | | (ь) | $(x-11)^2 + (y \pm their k)^2 = 4^2$ Equation must be of this form and must use x and y not other letters. k could be their last answer to part (a). Allow their $k \neq 0$ or just the letter k . $A1: (x-11)^2 + (y-5\sqrt{3})^2 = 16$ or $(x-11)^2 + (y-5\sqrt{3})^2 = 4^2$ NB $5\sqrt{3}$ must come from correct work in (a) and allow awrt 8.66 | - M1A1 | | | Allow in expanded form for the final A1 | | | ÷ | e.g. $x^2 - 22x + 121 + y^2 - 10\sqrt{3}y + 75 = 16$ | [2
Total | | | Watch out for: | | | | (a) $OQ = \sqrt{(6\sqrt{5})^2 + 4^2} = \sqrt{46} \text{ M1}$
$y_Q = \sqrt{46 - 11^2} \text{ M0 (OQ} < 11)$
$y_Q = \sqrt{75} \text{ A0}$
(b) $(x - 11)^2 + (y - 5\sqrt{3})^2 = 16 \text{ M1A0}$ | | | Question
Number | S | Scheme | Marks | |--------------------|---|--|-------| | (a) | $A\left(\frac{-9+15}{2},\frac{8-10}{2}\right) = A(3,-1)$ | M1: A correct attempt to find the midpoint between P and Q. Can be implied by one of x or y-coordinates correctly evaluated. A1: (3, -1) | M1A1 | | | | | [2 | | (b) | or $(15-3)^2 + (-10+1)^2$ Uses Pythagoras correctly in order to the radius and may be in $(15+9)^2 + (-10-8)^2$ Uses Pythagoras correctly in order to the asthe diameter and may be as the diameter and may be as the radius (may be seen th | or $\sqrt{(-9-3)^2 + (8+1)^2}$
$1)^2$ or $\sqrt{(15-3)^2 + (-10+1)^2}$
find the radius . Must clearly be identified as implied by their circle equation. Or or $\sqrt{(15+9)^2 + (-10-8)^2}$
find the diameter . Must clearly be identified implied by their circle equation. early seen as the diameter or 15 clearly seen or implied in their circle equation) in the content of the radius or the impust be seen in (b) | M1 | | | $(x-3)^2 + (y+1)^2 = 225 \text{ (or (15)}^2)$ | $(x \pm \alpha)^2 + (y \pm \beta)^2 = k^2$ where $A(\alpha, \beta)$ and k is their radius. | M1 | | | $(x-3)^2 + (y+1)^2 = 225$ | Allow $(x-3)^2 + (y+1)^2 = 15^2$ | A1 | | | Accept correct answer only | | | | | Alternative using $x^2 + 2ax + y^2 + 2by + c = 0$ | | [3 | | | | | - | | | | $dx^{2} + 2ax + y^{2} + 2by + c = 0$
$(x + y^{2} + 2(1)y + c = 0$ | M1 | | | | $(x^2 + 2ax + y^2 + 2by + c = 0)$
$(8)^2 + 2(1)(8) + c = 0 \Rightarrow c = -215$ | M1 | | | | $y^2 + 2y - 215 = 0$ | A1 | | (c) | Distance = $\sqrt{15^2 - 10^2}$ | = $\sqrt{(\text{their } r)^2 - 10^2}$ or a correct method
for the distance e.g.
their $r \times \cos\left[\sin^{-1}\left(\frac{10}{\text{their } r}\right)\right]$ | M1 | | | $\{=\sqrt{125}\}=5\sqrt{5}$ | 5√5 | A1 | | | | | [2 | | Question
Number | | Scheme | Marks | |--------------------|---|---|---------| | (d) | $\sin(A\widehat{R}Q) = \frac{20}{30} \text{ or}$ $A\widehat{R}Q = 90 - \cos^{-1}\left(\frac{10}{15}\right)$ | $\sin(\widehat{ARQ}) = \frac{20}{(2 \times \text{their } r)} \text{ or } \frac{10}{\text{their } r}$ or $\widehat{ARQ} = 90 - \cos^{-1}\left(\frac{10}{\text{their } r}\right)$ or $\widehat{ARQ} = \cos^{-1}\left(\frac{\text{Part}(c)}{\text{their } r}\right)$ or $\widehat{ARQ} = \cos^{-1}\left(\frac{\text{Part}(c)}{\text{their } r}\right)$ or $20^2 = 15^2 + 15^2 - 2 \times 15 \times 15 \cos(2ARQ)$ or $15^2 = 15^2 + \left(10\sqrt{5}\right)^2 - 2 \times 15 \times 10\sqrt{5}\cos(ARQ)$ A fully correct method to find \widehat{ARQ} , where their $r > 10$. Must be a correct statement involving angle \widehat{ARQ} | M1 | | | $\widehat{ARQ} = 41.8103$ | awrt 41.8 | A1 | | | | | [2] | | | | | Total 9 | | Question
Number | Sc | heme | Marks | |--------------------|--|---|---| | (a) (b) Way 1 | N.B. Special case: $(x-2)^2 - (y+1)^2 = 20$ is Gradient of radius from centre to $(4, -5) = -\frac{1}{2}$ Tangent gradient = $-\frac{1}{2}$ their numerical gradient Equation of tangent is $(y+5) = \frac{1}{2}(x-4)$ | $x^{2} + y^{2} - 4x + 2y - 15 = 0$ s not a circle equation but earns M0M1A0 (must be correct) | M1
M1
A1
(3)
B1
M1
M1
A1 | | b)Way 2 | Quotes $xx' + yy' - 2(x + x') + (y + y') - 15 = 4x - 5y - 2(x + 4) + (y - 5) - 15 = 0$ so $2x - 2(x + 4) + (y - 5) - 15 = 0$ | | B1
M1,M1A1 | | b)Way 3 | Use differentiation to find expression for grade Either $2(x-2) + 2(y+1)\frac{dy}{dx} = 0$ or states $y = 0$ Substitute $x = 4$, $y = -5$ after valid differential. Then as Way 1 above $(y+5) = \frac{1}{2}(x-4)$ so | $=-1-\sqrt{20-(x-2)^2}$ so $\frac{dy}{dx} = \frac{(x-2)}{\sqrt{20-(x-2)^2}}$
tion to give gradient = | (4)
B1
M1
M1 A1 | | | | To 1 | (4) | #### Notes (a) M1: Uses centre to write down equation of circle in one of these forms. There may be sign slips as shown. M1: Attempts distance between two points to establish r^2 (independent of first M1)- allow one sign slip only using distance formula with -5 or -1, usually (-5-1) in 2^{nd} bracket. Must not identify this distance as diameter. This mark may alternatively (e.g. way 2)be given for substituting (4, -5) into a correct circle equation with one unknown Can be awarded for $r = \sqrt{20}$ or for $r^2 = 20$ stated or implied but not for $r^2 = \sqrt{20}$ or r = 20 or $r = \sqrt{5}$ A1: Either of the answers printed or correct equivalent e.g. $(x-2)^2 + (y+1)^2 = (2\sqrt{5})^2$ is A1 but $2\sqrt{5}^2$ (no bracket) is A0 unless there is recovery Also $(x-2)^2 + (y-(-1))^2 = (2\sqrt{5})^2$ may be awarded M1M1A1as a correct equivalent. N.B. $(x-2)^2 + (y+1)^2 = 40$ commonly arises from one sign error evaluating r and earns M1M1A0 (b) Way 1: B1: Must be correct answer -2 if evaluated (otherwise may be implied by the following work) M1: Uses negative reciprocal of their gradient M1: Uses $y - y_1 = m(x - x_1)$ with (4,-5) and their changed gradient or uses y = mx + c and (4, -5) with their changed gradient (not gradient of radius) to find c Al: answers in scheme or multiples of these answers (must have " = 0"). NB Allow 1x - 2y - 14 = 0 N.B. $(y+5) = \frac{1}{2}(x-4)$ following gradient of is $\frac{1}{2}$ after errors leads to x-2y-14=0 but is worth B0M0M0A0 Way 2: Alternative method (b) is rare. Way 3: Some may use implicit differentiation to differentiate- others may attempt to make y the subject and use chain rule B1: the differentiation must be accurate and the algebra accurate too. Need to take (-) root not (+) root in the alternative M1: Substitutes into their gradient function but must follow valid accurate differentiation M1: Must use "their" tangent gradient and y+5=m(x-4) but allow over simplified attempts at differentiation for this mark. Al: As in Way 1 | 7, 8) and $Q(10, 13)$
$Q = \begin{cases} \sqrt{(7-10)^2 + (8-13)^2} \text{ or } \sqrt{(10-7)^2} \\ Q \end{cases} = \sqrt{34}$
$(-7)^2 + (y-8)^2 = 34 \left(\text{or } \left(\sqrt{34} \right)^2 \right)$
$(-7)^2 + (y-8)^2 = 34 \left(\text{or } \left(\sqrt{34} \right)^2 \right)$
$(-7)^2 + (y-8)^2 = 34 \left(\text{or } \left(\sqrt{34} \right)^2 \right)$
$(-7)^2 + (y-8)^2 = 34 \left(\text{or } \left(\sqrt{34} \right)^2 \right)$
$(-7)^2 + (y-8)^2 = 34 \left(\text{or } \left(\sqrt{34} \right)^2 \right)$ | $+ (13 - 8)^{2}$ Applies distance formula. Can be implied. $\sqrt{34} \text{ or } \sqrt{17}.\sqrt{2}$ $(x \pm 7)^{2} + (y \pm 8)^{2} = k,$ where k is a positive value. $(x - 7)^{2} + (y - 8)^{2} = 34$ $x^{2} + y^{2} \pm 14x \pm 16y + c = 0,$ where c is any value < 113. $x^{2} + y^{2} - 14x - 16y + 79 = 0$ This must be seen or implied in part (c). Using a perpendicular gradient method on their | M1 A1 [2] M1 A1 oe [2] M1 A1 oe [2] B1 | |--|---|---| | $y^2 - 14x - 16y + 79 = 0$
radient of radius $y = \frac{13 - 8}{10 - 7}$ or $\frac{5}{3}$ | where k is a positive value. $(x-7)^2 + (y-8)^2 = 34$ $x^2 + y^2 \pm 14x \pm 16y + c = 0,$ where c is any value < 113. $x^2 + y^2 - 14x - 16y + 79 = 0$ This must be seen or implied in part (c). | M1 A1 oe [2] M1 A1 oe [2] | | radient of radius $=$ $\frac{13-8}{10-7}$ or $\frac{5}{3}$ | where c is any <u>value</u> < 113. $x^2 + y^2 - 14x - 16y + 79 = 0$ This must be seen or implied in part (c). | M1
A1 oe | | | | | | | Using a perpendicular gradient method on their | | | adient of tangent $=-\frac{1}{m}\left(=-\frac{3}{5}\right)$ | gradient. So Gradient of tangent = - 1 gradient of radius | M1 | | $-13 = -\frac{3}{5}(x - 10)$
+5y - 95 = 0 | y - 13 = (their changed gradient) $(x - 10)3x + 5y - 95 = 0$ o.e. | M1
A1 | | $(x - 7) + 2(y - 8)\frac{dy}{dx} = 0$ | Correct differentiation (or equivalent).
Seen or implied | [4]
B1 | | $(0-7) + 2(13-8)\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{3}{5}$ | Substituting both $x = 10$ and $y = 13$ into a valid differentiation to find a value for $\frac{dy}{dx}$ | M1 | | $-13 = -\frac{3}{5}(x - 10)$ | y - 13 = (their gradient)(x - 10) | M1 | | +5y - 95 = 0 | 3x + 5y - 95 = 0 o.e. | A1 | | x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0 | 10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0 $10x + 13y - 7(x + 10) - 8(y + 13) + c = 0$ where c is any value < 113 | M2 | | | $4 + 5y - 95 = 0$ $(x - 7) + 2(y - 8)\frac{dy}{dx} = 0$ $(x - 7) + 2(13 - 8)\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{3}{5}$ $(x - 7) + 2(13 - 8)\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{3}{5}$ $(x - 10) + 5y - 95 = 0$ | $3x + 5y - 95 = 0$ $3x + 5y - 95 = 0 \text{ o.e.}$ $(x - 7) + 2(y - 8)\frac{dy}{dx} = 0$ $0 - 7) + 2(13 - 8)\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{3}{5}$ $-13 = -\frac{3}{5}(x - 10)$ $+ 5y - 95 = 0$ $x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0$ $x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0$ $x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0$ $x + 13y - 7(x + 10) - 8(y + 13) + c = 0$ | | 3 | 3 | Question Notes | | | |-----|--------------------|--|--|--| | (a) | M1 | Allow for $\{PQ =\} \sqrt{(7-10)^2 + (8-13)^2}$ or for $\{PQ =\} \sqrt{3^2 + 5^2}$. Can be implied by answer. | | | | | A1 | Need to see $\sqrt{34}$. You can ignore subsequent work so $\sqrt{34}$ followed by 5.83 earns M1 A1, but | | | | | | $\{PQ = \} \sqrt{3^2 + 5^2} = 5.83$, with no exact value for the answer given, earns M1A0. Allow $\pm \sqrt{34}$ this time. | | | | | | NB Some use equation of circle to find this distance Achieving √34 gets M1A1 | | | | | | Others find half of their $\pm\sqrt{34}$. Do not isw here as it is an error – confusing d with diameter.
Give M1A0 | | | | (b) | M1 | Either of the correct approaches for equation of circle (as shown on scheme) | | | | | Al | Correct equation (two are shown and any correct equivalent is acceptable) | | | | (c) | | | | | | | | A correct start to finding the gradient of the tangent (see each scheme) | | | | | Bl | Complete method for finding the gradient of the tangent (see each scheme) Where implicit differentiation has been used the only slips allowed here should be sign slips. | | | | | 1 st M1 | Correct attempt at line equation for tangent at correct point (10, 13) with their tangent gradient. If the $y = mx + c$ method is used to find the equation, this M1 is earned at the point where the x- | | | | | 2 nd M1 | and y-values are substituted to find c e.g. $13 = -3/5 \times 10 + c$ | | | | | | Accept any correct answer of the required format; so integer multiple of $3x + 5y - 95 = 0$ or $3x - 95 + 5y = 0$ or $-3x - 5y + 95 = 0$ (must include "=0") e.g. $6x + 10y - 190 = 0$ earns A1 | | | | | Al | Also allow $5y + 3x - 95 = 0$ etc | | | | | Common | $\frac{dy}{dx} = 2(x-7) + 2(y-8) = 6 + 10 = 16 \text{ so } (y-13) = 16(x-10) \text{ is marked B0 M0 M1 A0 (Way 2)}$ | | | | Question
number | Scheme | Marks | | |--------------------|--|-------------|------------| | (a) | $x^2 + y^2 - 10x + 6y + 30 = 0$
Uses any appropriate method to find the coordinates of the centre, e.g achieves $(x \pm 5)^2 + (y \pm 3)^2 = \dots$ Accept $(\pm 5, \pm 3)$ as indication of this.
Centre is $(5, -3)$. | M1
A1 | (2) | | (b) Way 1 | Uses $(x \pm "5")^2 - "5^2" + (y \pm "3")^2 - "3^2" + 30 = 0$ to give $r = \sqrt{"25" + "9" - 30}$ or $r^2 = "25" + "9" - 30$ (not $30 - 25 - 9$) $r = 2$ | M1
A1cao | | | Or Way 2 | Using $\sqrt{g^2 + f^2 - c}$ from $x^2 + y^2 + 2gx + 2fy + c = 0$ (Needs formula stated or correct working) $r = 2$ | M1 | (2) | | (c) Way 1 | Use $x = 4$ in an equation of circle and obtain equation in y only | M1 | (2) | | | e.g. $(4-5)^2 + (y+3)^2 = 4$ or $4^2 + y^2 - 10 \times 4 + 6y + 30 = 0$
Solve their quadratic in y and obtain two solutions for y e.g. $(y+3)^2 = 3$ or $y^2 + 6y + 6 = 0$ so $y = -3 \pm \sqrt{3}$ | dM1 | | | Or Way 2 | Divide triangle PTQ and use Pythagoras with " r " r " r Find h and evaluate " -3 " $\pm h$. May recognise $(1, \sqrt{3}, 2)$ triangle. | M1
dM1 | (3) | | | So $y = -3 \pm \sqrt{3}$ | A1 | (3)
[7] | | ٥ | Notes | |-----|---| | (a) | Parts (a) and (b) can be marked together M1 as in scheme and can be <u>implied</u> by $(\pm 5, \pm 3)$ May be awarded for writing LHS as $(x \pm 5)^2 + (y \pm 3)^2 = \dots$ | | | or by comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down centre $(-g, -f)$ directly A1: $(5, -3)$. This correct answer implies M1A1 | | (b) | M1 for a full correct method leading to $r =$, or $r^2 =$ with their 5, their -3, their 25 and their 9 and their "-30". Completion of square method errors result in M0 here. Usually $r =$ 4 or $r =$ 16 imply M0A0 | | | Al 2 cao Do not accept $r=\pm 2$ unless it is followed by $(r=)$ 2 The correct answer with no wrong work seen implies M1A1 | | | Special case: if centre is given as $(-5, -3)$ or $(5, 3)$ or $(-5, 3)$ allow M1A1 for $r = 2$ worked correctly. i.e. $r^2 = "25" + "9" - 30$ | | (c) | M1: Way 1: Use $x = 4$ in a circle equation (may have wrong centre and/or radius) to obtain an equation in y only | | | or Way 2. Uses geometry to find equation in h (ft on their radius and centre) dM1: (needs first method mark) Solve their quadratic in y or Way 2. Uses their h and their y coordinate correctly | | | Al: cao |