

Modelling with Differentiation - Edexcel Past Exam Questions 2 MARK SCHEME

Question			ks
(a)	$[y = x^3 + 2x^2]$ so $\frac{dy}{dx} = 3x^2 + 4x$	MIA1	(2)
(b)	Shape Touching x-axis at origin Through and not touching or stopping at -2	B1 B1 B1	
	on x –axis. Ignore extra intersections.		(3
(c)	At $x = -2$: $\frac{dy}{dx} = 3(-2)^2 + 4(-2) = 4$	M1	
	At $x = 0$: $\frac{dy}{dx} = 0$ (Both values correct)	Al	(2)
(d)	Horizontal translation (touches x-axis still) k-2 and k marked on positive x-axis $k^2(2-k)$ (o.e) marked on negative y-axis	M1 B1 B1	
		10 mar	(3
	Notes	Tomari	4.5
(a) Prod Rule	M1 for attempt to multiply out and then some attempt to differentiate $x^n \to x^{n-1}$ Do not award for $2x(x+2)$ or $2x(1+2)$ etc Award M1 for a correct attempt: 2 products with a + and at least one product correct A1 for both terms correct. (If +c or extra term is included score A0)		
(b)	 1st B1 for correct shape (anywhere). Must have 2 clear turning points. 2nd B1 for graph touching at origin (not crossing or ending) 3rd B1 for graph passing through (not stopping or touching at) -2 on x axis and -2 marked on axis 		on
SC	B0B0B1 for $y = x^3$ or cubic with straight line between (-2,0) and (0,0)		
(c)	M1 for attempt at $y'(0)$ or $y'(-2)$. Follow through their 0 or -2 and their $y'(x)$ or for a <u>correct</u> statement of zero gradient for an identified point on their curve that touches x- axis A1 for both correct answers		
(d)			

Question	Scheme			
(a)	$\left(\frac{1}{2},0\right)$	B1		
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-2}$	MIA1		
	At $x = \frac{1}{2}$, $\frac{dy}{dx} = \left(\frac{1}{2}\right)^{-2} = 4$ (= m)	Al		
	Gradient of normal $= -\frac{1}{m}$ $\left(=-\frac{1}{4}\right)$	M1		
	Equation of normal: $y - 0 = -\frac{1}{4}\left(x - \frac{1}{2}\right)$	M1		
	2x + 8y - 1 = 0 (*)	Alcso		
(c)	$2 - \frac{x}{x} - \frac{x}{4} + \frac{x}{8}$	M1		
	$[=2x^{2}+15x-8=0] \underline{\text{or}} [8y^{2}-17y=0]$	10102		
	(2x-1)(x+8) = 0 leading to $x =$	Ml		
	$x = \begin{bmatrix} \frac{1}{2} \end{bmatrix}$ or -8	Al		
	$y = \frac{17}{8}$ (or exact equivalent)	Alft		
	8 tor enact equivalenty	(4)		
	Notes	11 marks		
(a)	B1 accept $x = \frac{1}{2}$ if evidence that $y = 0$ has been used. Can be written of	on graph. Use IS		
(b)		vidence of $\frac{dy}{dt}$		
	1^{st} Al for x^{-2} (o.e.) only seen the	en 0/6		
	2^{nd} A1 for using $x = 0.5$ to get $m = 4$ (correctly) (or $m = 1/0.25$)			
	To score final Alcso must see at least one intermediate equation for the line after $m = 4$			
	2^{nd} M1 for using the perpendicular gradient rule on their <i>m</i> coming from t	$\frac{dy}{dx}$		
	Their m must be a value not a letter.	u.		
	3 rd M1 for using a changed gradient (based on y') and their A to find equ	ation of line		
	3^{rd} M1 for using a changed gradient (based on y') and their A to find equ 3^{rd} Alcso for reaching printed answer with no incorrect working seen.	ation of line		
(c)	3 rd M1 for using a changed gradient (based on y') and their A to find equ	ation of line		
(c)	3^{rd} M1for using a changed gradient (based on y') and their A to find equ 3^{rd} Alcsofor reaching printed answer with no incorrect working seen.Accept $2x + 8y = 1$ or equivalent equations with $\pm 2x$ and $\pm 8y$ Trial and improvement requires sight of first equation. 1^{st} M1for attempt to form a suitable equation in one variable. Do not penalise point			
(c)	 3rd M1 for using a changed gradient (based on y') and their A to find equ 3rd Alcso for reaching printed answer with no incorrect working seen. Accept 2x + 8y = 1 or equivalent equations with ± 2x and ± 8y Trial and improvement requires sight of first equation. 1st M1 for attempt to form a suitable equation in one variable. Do not penalise poetc. 2nd M1 for simplifying their equation to a 3TQ and attempting to solve. M 	oor use of bracket		
(c)	3^{rd} M1for using a changed gradient (based on y') and their A to find equ 3^{rd} Alcsofor reaching printed answer with no incorrect working seen.Accept $2x + 8y = 1$ or equivalent equations with $\pm 2x$ and $\pm 8y$ Trial and improvement requires sight of first equation. 1^{st} M1for attempt to form a suitable equation in one variable. Do not penalise poetc.	oor use of bracket lay be		
(c)	 3rd M1 for using a changed gradient (based on y') and their A to find equ 3rd Alcso for reaching printed answer with no incorrect working seen. Accept 2x + 8y = 1 or equivalent equations with ± 2x and ± 8y Trial and improvement requires sight of first equation. 1st M1 for attempt to form a suitable equation in one variable. Do not penalise poetc. 2nd M1 for simplifying their equation to a 3TQ and attempting to solve. M ⇒ by x = -8 	oor use of bracket lay be f x < 0		

alkerman

Question Number	Scheme	Marks
	$y = 5x^3 - 6x^{\frac{4}{3}} + 2x - 3$	
(a)	$\left\{\frac{dy}{dx} = \right\} 5(3)x^2 - 6\left(\frac{4}{3}\right)x^{\frac{1}{3}} + 2$	M1
	$= 15x^2 - 8x^{\frac{1}{3}} + 2$	A1 A1 A1
	$\left[d^2 \nu\right] = 8 - \frac{2}{3}$	[4]
(b)	$\left\{\frac{d^2 y}{dx^2}\right\} = 30x - \frac{8}{3}x^{-\frac{2}{3}}$	M1 A1
		[2]
	Notes	
45	M1 : for an attempt to differentiate $x^n \to x^{n-1}$ to one of the first three terms of $y = 5x^3 - 1$	$6x^{\frac{4}{3}} + 2x - 3$.
(a)	So seeing either $5x^3 \rightarrow \pm \lambda x^2$ or $-6x^{\frac{4}{3}} \rightarrow \pm \mu x^{\frac{1}{3}}$ or $2x \rightarrow 2$ is M1.	
	1^{st} A1: for $15x^2$ only.	
	2 nd A1: for $-8x^{\frac{1}{3}}$ or $-8\sqrt[3]{x}$ only.	
	3^{rd} A1: for +2 (+c included in part (a) loses this mark). Note: $2x^0$ is A0 unless simplified	ed to 2.
(b)	M1: For differentiating $\frac{dy}{dx}$ again to give either	
	 a correct follow through differentiation of their x² term or for ±αx^{1/3}→±βx^{2/3}. 	
	A1: for any correct expression on the same line (accept un-simplified coefficients).	
	A1: for any correct expression on the same line (accept un-simplified coefficients). For powers: $30x^{2-1} - \frac{8}{3}x^{\frac{1}{3}-1}$ is A0, but writing powers as one term eg: $(15 \times 2x) - \frac{8}{3}x^{-\frac{4}{6}}$	is ok for A1.
	For powers: $30x^{2-1} - \frac{8}{3}x^{\frac{1}{3}-1}$ is A0, but writing powers as one term eg: $(15 \times 2x) - \frac{8}{3}x^{-\frac{4}{6}}$ Note: Candidates leaving their answers as $\left\{\frac{dy}{dx}=\right\}15x^2 - \frac{24}{3}x^{\frac{1}{3}} + 2$ and $\left(\frac{d^2y}{dx^2}=\right)30x - awarded$ M1A1A0A1 in part (a) and M1A1 in part (b).	
	For powers: $30x^{2-1} - \frac{8}{3}x^{\frac{1}{3}-1}$ is A0, but writing powers as one term eg: $(15 \times 2x) - \frac{8}{3}x^{-\frac{4}{6}}$ Note: Candidates leaving their answers as $\left\{\frac{dy}{dx}=\right\}15x^2 - \frac{24}{3}x^{\frac{1}{3}} + 2$ and $\left(\frac{d^2y}{dx^2}=\right)30x - \frac{4}{3}x^{\frac{1}{3}}$ awarded M1A1A0A1 in part (a) and M1A1 in part (b). Be careful: $30x - \frac{8}{3}x^{-\frac{1}{3}}$ will be A0.	$\frac{24}{9}x^{-\frac{2}{3}}$ are
	For powers: $30x^{2-1} - \frac{8}{3}x^{\frac{1}{3}-1}$ is A0, but writing powers as one term eg: $(15 \times 2x) - \frac{8}{3}x^{-\frac{4}{6}}$ Note: Candidates leaving their answers as $\left\{\frac{dy}{dx}=\right\}15x^2 - \frac{24}{3}x^{\frac{1}{3}} + 2$ and $\left(\frac{d^2y}{dx^2}=\right)30x - \frac{4}{3}x^{-\frac{1}{3}}$ awarded M1A1A0A1 in part (a) and M1A1 in part (b). Be careful: $30x - \frac{8}{3}x^{-\frac{1}{3}}$ will be A0. Note: For an extra term appearing in part (b) on the same line, ie $30x - \frac{8}{3}x^{-\frac{2}{3}} + 2$ is M1A0	$\frac{24}{9}x^{-\frac{2}{3}}$ are
	For powers: $30x^{2-1} - \frac{8}{3}x^{\frac{1}{3}-1}$ is A0, but writing powers as one term eg: $(15 \times 2x) - \frac{8}{3}x^{-\frac{4}{6}}$ Note: Candidates leaving their answers as $\left\{\frac{dy}{dx}=\right\}15x^2 - \frac{24}{3}x^{\frac{1}{3}} + 2$ and $\left(\frac{d^2y}{dx^2}=\right)30x - \frac{4}{3}x^{\frac{1}{3}}$ awarded M1A1A0A1 in part (a) and M1A1 in part (b). Be careful: $30x - \frac{8}{3}x^{-\frac{1}{3}}$ will be A0.	$\frac{24}{9}x^{-\frac{2}{3}}$ are

Number	Scheme	Marks
	$C: y = 2x - 8\sqrt{x} + 5, x \ge 0$	
(a)	So, $y = 2x - 8x^{\frac{1}{2}} + 5$	
	$\frac{dy}{dx} = 2 - 4x^{\frac{1}{2}} + \{0\} \qquad (x \ge 0)$	M1 A1 A
	$\frac{dx}{dx} = 2 - 4x + \{0\} \qquad (x > 0)$	
(b)	(When $x = \frac{1}{4}$, $y = 2(\frac{1}{4}) - 8\sqrt{(\frac{1}{4})} + 5$ so) $y = \frac{3}{2}$	[3 B1
(0)		BI
	$(\text{gradient} = \frac{dy}{dx} =) 2 - \frac{4}{\sqrt{(\frac{1}{4})}} \{= -6\}$	M1
	Either: $y - \frac{3}{2} = -6''(x - \frac{1}{4})$ or: $y = -6''x + c$ and	
	$"\frac{3}{2}" = "-6"(\frac{1}{4}) + c \implies c = "3"$	dM1
	So $y = -6x + 3$	A1
12/201		[4
(c)	Tangent at Q is parallel to $2x - 3y + 18 = 0$	
	$(y = \frac{2}{3}x + 6 \Rightarrow)$ Gradient = $\frac{2}{3}$. so tangent gradient is $\frac{2}{3}$	B1
	So, " $2 - \frac{4}{\sqrt{x}}$ " = " $\frac{2}{3}$ " Sets their gradient function = their numerical gradient.	M1
	$\Rightarrow \frac{4}{3} = \frac{4}{\sqrt{x}} \Rightarrow x = 9$ Ignore extra answer $x = -9$	A1
	When $x = 9$, $y = 2(9) - 8\sqrt{9} + 5 = -1$ Substitutes their found x into equation of curve.	dM1
	when $x = y$, $y = 2(y) = 0$, $y = y = -1$. y = -1.	A1
		[5 12 marks
	Notes	
(a)	M1: Evidence of differentiation, so $x^n \to x^{n-1}$ at least once so $x^1 \to 1$ or x^0 or $x^{\frac{1}{2}} \to x^{-\frac{1}{2}}$ not A1: Any two of the three terms correct – do not need to see zero – the 5 disappearing is sufficient be simplified.	
(b)	A1: $2 - 4x^{\frac{1}{2}}$ Both terms correct, and simplified. Do not need to include domain $x > 0$ B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen)	
(b)	B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen) M1: An attempt to substitute $x = \frac{1}{4}$ into $\frac{dy}{dx}$ to establish gradient. This may be implied by -6 or	: <i>m</i> = −6 but
(b)	B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen)	r <i>m</i> = −6 but
(Ь)	B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen) M1: An attempt to substitute $x = \frac{1}{4}$ into $\frac{dy}{dx}$ to establish gradient. This may be implied by -6 or	
(b)	B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen) M1: An attempt to substitute $x = \frac{1}{4}$ into $\frac{dy}{dx}$ to establish gradient. This may be implied by -6 or not $y = -6$. Can earn this M mark if they go on to use $m = \frac{1}{6}$ or use their numerical value of $\frac{dy}{dx}$ dM1: This depends on previous method mark. Complete method for obtaining the equation of t	
(b)	B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen) M1: An attempt to substitute $x = \frac{1}{4}$ into $\frac{dy}{dx}$ to establish gradient. This may be implied by -6 or not $y = -6$. Can earn this M mark if they go on to use $m = \frac{1}{6}$ or use their numerical value of $\frac{dy}{dx}$ dM1: This depends on previous method mark. Complete method for obtaining the equation of t using their tangent gradient and their value for y_1 (obtained from $x = \frac{1}{4}$, allow slip) i.e.	
(b) (c)	B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen) M1: An attempt to substitute $x = \frac{1}{4}$ into $\frac{dy}{dx}$ to establish gradient. This may be implied by -6 or not $y = -6$. Can earn this M mark if they go on to use $m = \frac{1}{6}$ or use their numerical value of $\frac{dy}{dx}$ dM1: This depends on previous method mark. Complete method for obtaining the equation of t using their tangent gradient and their value for y_1 (obtained from $x = \frac{1}{4}$, allow slip) i.e. $y - y_1 = m_T (x - \frac{1}{4})$ with their tangent gradient and their y_1 or uses $y = mx + c$ with $(\frac{1}{4}$, their y_1) and their tangent gradient. A1: $y = -6x + 3$ or $y = 3 - 6x$ or $a = -6$ and $b = 3$ B1: For the value $2/3$ not $2/3x$ not $-3/2$ M1: Sets their gradient function dy/dx = their numerical gradient A1: Obtains $x = 9$	the tangent,
	B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen) M1: An attempt to substitute $x = \frac{1}{4}$ into $\frac{dy}{dx}$ to establish gradient. This may be implied by -6 or not $y = -6$. Can earn this M mark if they go on to use $m = \frac{1}{6}$ or use their numerical value of $\frac{dy}{dx}$ dM1: This depends on previous method mark. Complete method for obtaining the equation of t using their tangent gradient and their value for y_1 (obtained from $x = \frac{1}{4}$, allow slip) i.e. $y - y_1 = m_T (x - \frac{1}{4})$ with their tangent gradient and their y_1 or uses $y = mx + c$ with $(\frac{1}{4}$, their y_1) and their tangent gradient. A1: $y = -6x + 3$ or $y = 3 - 6x$ or $a = -6$ and $b = 3$ B1: For the value $2/3$ not $2/3x$ not $-3/2$ M1: Sets their gradient function dy/dx = their numerical gradient	the tangent,

Question Number		Scheme	Marks
(a)	$(3-x^2)^2 = 9 - 6x^2 + x^4$	An attempt to expand the numerator obtaining an expression of the form $9 \pm px^2 \pm qx^4$, $p, q \neq 0$	M1
	$9x^{-2} + x^2$	Must come from $\frac{9+x^4}{x^2}$	A1
	-6	Must come from $\frac{-6x^2}{x^2}$	A1
		as $(3x^{-1} - x)^2$ and attempts to expand = M1 A1 as in the scheme.	
	Alternative 2: Sets $(3 - x^2)^2 = 9$	+ $Ax^2 + Bx^4$, expands $(3 - x^2)^2$ and compares then A1A1 as in the scheme.	
	(f'(x	$y = 9x^{-2} - 6 + x^2$	(3
(b)	$-18x^{-3} + 2x$	M1: $x^n \rightarrow x^{n-1}$ on separate terms at least once. Do not award for $A \rightarrow 0$ (Integrating is M0)	M1 A1ft
(0)	-10x + 2x	A1ft: $-18x^{-3} + 2"B"x$ with a numerical B and no extra terms. (A may have been incorrect or even zero)	
			(2
	3	M1: $x^n \rightarrow x^{n+1}$ on separate terms at least once. (Differentiating is M0)	
(c)	$f(x) = -9x^{-1} - 6x + \frac{x^3}{3}(+c)$	A1ft: $-9x^{-1} + Ax + \frac{Bx^3}{3}(+c)$ with numerical A and B, $A, B \neq 0$	M1A1ft
	$10 = \frac{-9}{-3} - 6(-3) + \frac{(-3)^3}{3} + c \text{ so } c$ $= \dots$		M1
	<i>c</i> = -2	cso	A1
	$(f(x) =) - 9x^{-1} - 6x + \frac{x^3}{3} + \text{their}$ c	Follow through their c in an otherwise (possibly un-simplified) correct expression. Allow $-\frac{9}{x}$ for $-9x^{-1}$ or even $\frac{9x^{-1}}{-1}$.	A1ft
), no marks there but if they then go on to he marks for integration are available.	
			(5
			[10

Question Number	Sch	eme	Marks
(a)	$\left(-\frac{3}{4}, 0\right)$. Accept $x = -\frac{3}{4}$		B1
			(1
(b)	<i>y</i> = 4	B1: One correct asymptote	
	x = 0 or 'y-axis'	B1: Both correct asymptotes and no extra ones.	B1B1
	Special case $x \neq 0$ and	d $y \neq 4$ scores B1B0	
			(2
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3x^{-2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = kx^{-2} (\text{Allow } \frac{\mathrm{d}y}{\mathrm{d}x} = kx^{-2} + 4)$	M1
	At $x = -3$, gradient of curve $= -\frac{1}{3}$	Cao (may be un-simplified but must be a fraction with no powers) e.g. $-3(-3)^{-2}$ scores A0 unless evaluated as e.g. $\frac{-3}{9}$ or is implied by their normal gradient.	A1
	Gradient of normal = $-1/m$	Correct perpendicular gradient rule applied to a numerical gradient that must have come from substituting x = -3 into their derivative. Dependent on the previous M1.	dM1
	Normal at P is $(y-3) = 3(x+3)$	M1: Correct straight line method using (-3, 3) and a "changed" gradient. A wrong equation with no formula quoted is M0. Also dependent on the first M1. A1: Any correct equation	dM1A1
			(5
(d)	(-4, 0) and (0, 12).	Both correct (May be seen on a sketch)	B1
	So <i>AB</i> has length $\sqrt{160}$ or <i>AB</i> ² has length 160	M1: Correct use of Pythagoras for their A and B one of which lies on the x-axis and the other on the y-axis, obtained from their equation in (c). A correct method for AB^2 or AB . A1: $\sqrt{160}$ or better e.g. $4\sqrt{10}$ with	M1 A1cso
		no errors seen	ci.
			(3
			[11

Question Number	Scheme	Notes	Marks
	$y = x^3 + 4x + 1 \Longrightarrow \frac{dy}{dx} = 3x^2 + 4(+0)$	M1: $x^n \rightarrow x^{n-1}$ including $1 \rightarrow 0$ A1: Correct differentiation (Do not allow $4x^0$ unless $x^0 = 1$ is implied by later work)	M1A1
	substitute $x = 3 \Rightarrow$ gradient = 31	M1: Substitutes $x = 3$ into their $\frac{dy}{dx}$ (not y) Substitutes $x = 3$ into a "changed" function. They may even have integrated.	M1A1
-		A1: cao	[

Question Number	Scheme	Marks
	(a) $(1-2x)^2 = 1-4x+4x^2$	M1
	$\frac{d}{dx}(1-2x)^2 = \frac{d}{dx}(1-4x+4x^2) = -4+8x \text{ o.e.}$	M1A1
		(3)
	Alternative method using chain rule: Answer of $-4(1-2x)$	M1M1A1 (3)
	(b) $\frac{x^5 + 6\sqrt{x}}{2x^2} = \frac{x^5}{2x^2} + 6\frac{\sqrt{x}}{2x^2}, = \frac{1}{2}x^3 + 3x^{-\frac{3}{2}}$	M1,A1
	Attempts to differentiate $x^{-\frac{3}{2}}$ to give $k x^{-\frac{5}{2}}$	M1
	$=\frac{3}{2}x^2-\frac{9}{2}x^{-\frac{5}{2}}$ o.e.	A1
	Quotient Rule (May rarely appear) - See note below	(4)
		(7 marks)

Notes

(a) M1 Attempt to multiply out bracket. Must be 3 or 4 term quadratic and must have constant term 1

- M1 $x^n \rightarrow x^{n-1}$. Follow through on any term in an incorrect expression. Accept a constant $\rightarrow 0$
- A1 -4+8x Accept -4 (1 2x) or equivalent. This is not cso and may follow error in the constant term Following correct answer by -2 + 4x - apply isw

Correct answer with no working - assume chain rule and give M1M1A1 i.e. 3/3

Common errors: $(1-2x)^2 = 2-4x+4x^2$ is M0, then allow M1A1 for -4 + 8x

 $(1-2x)^2 = 1-4x^2$ is M0 then -8x earns M1A0 or $(1-2x)^2 = 1-2x^2$ is M0 then -4x earns M1A0 Use of Chain Rule:

M1M1: first M1 for complete method so $2 \times (\pm 2)(1-2x)$ second M1 for (1-2x) (as power reduced) Then A1 for -4 (1-2x) or for -4 + 8x

So (i) 2(1-2x) gets M0 M1A0 for reducing power and (ii) $2 \times 2(1-2x)$ gets M1 M1A0

(b) M1 An attempt to divide by $2x^2$ first. This can be implied by the sight of the following

Some correct working e.g. $\frac{x^3}{2x^2} + 6\frac{\sqrt{x}}{2x^2}$ or $(x^5 + 6\sqrt{x})(2x^2)^{-1}$ leading to $ax^p + bx^q$ in either case

or can be implied by $\frac{1}{2}x^3 + 3x^p$ (after no working) i.e. both coefficients correct and power 3 correct

Common error: $(x^5 + 6\sqrt{x})2x^{-2}$ is M0 (may earn next M mark for the differentiation $x^{\frac{3}{2}} \to x^{\frac{5}{2}}$)

A1 Writing the given expression as $\frac{1}{2}x^3 + 3x^{-\frac{3}{2}}$ or $0.5x^3 + \frac{6}{2}x^{-\frac{3}{2}}$ or $0.5x^3 + \frac{6}{2}x^{-\frac{1}{2}}$ or etc...

M1
$$x^{-\frac{3}{2}} \rightarrow x^{-\frac{5}{2}}$$
 A1 Cao $\frac{3}{2}x^2 - \frac{9}{2}x^{-\frac{5}{2}}$ o.e. e.g. $\frac{3}{2}x^2 - \frac{9}{2x^2\sqrt{x}}$ then isw. Allow factorised form. Do not penalise $+ -\frac{9}{2}x^{-\frac{5}{2}}$ used instead of $-\frac{9}{2}x^{-\frac{3}{2}}$

Use of Quotient Rule : M1,A1:Reaching $\frac{2x^2(5x^4+3x^{-\frac{1}{2}})-4x(x^5+6x^{\frac{1}{2}})}{4x^4}$, $=\frac{6x^6-18x^{\frac{3}{2}}}{4x^4}$

Send to review if doubtful M1A1: Simplifying (e.g. dividing numerator and denominator by 2) to reach $\frac{3x^6 - 9x^{\frac{1}{2}}}{2x^4}$ o.e.

Strew 19	
Question	9

Question Number	Scher	ne	Marks
(a)	Substitutes $x = 2$ into $y = 20 - 4 \times$	$2-\frac{18}{2}$ and gets 3	B1
	u	$-4 + \frac{18}{x^2}$	M1 A1
	Substitute $x = 2 \Rightarrow \frac{dy}{dx} = \left(\frac{1}{2}\right)$ the function of the second	en finds negative reciprocal (-2)	dM1
	Method 1	Method 2	
	States or uses $y-3 = -2(x-2)$ or y = -2x + c with their (2, 3)	Or: Check that (2, 3) lies on the line $y = -2x + 7$	dM1
	to deduce that $y = -2x + 7$ *	Deduce equation of normal as it has the same gradient and passes through a common point	A1*
(b)	Put $20 - 4x - \frac{18}{x} = -2x + 7$ and simplify Or put $y = 20 - 4\left(\frac{7 - y}{2}\right) - \frac{18}{\left(\frac{7 - y}{2}\right)}$		(1 M1 A1
	(2x-9)(x-2) = 0 so $x = 0$ or		dM1
	$x = \frac{9}{2}, y = -$		A1, A1
			(11 marks) (1

PTO for notes on this question.

wermally a
Freurian

Question Number	Sche	me	Marks
(a)	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{x^3 - 3x^2 + 4x - 12}{2x} = \frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	M1: Attempt to divide each term by 2x. The powers of x of at least two terms must follow from their expansion. Allow an attempt to multiply by $2x^{-1}$ A1: Correct expression. May be un-simplified but powers of x must be combined e.g. $\frac{x^2}{2}$ not $\frac{x^3}{2x}$	M1A1
_	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	ddM1: $x^n \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 . If they lose the previous A1 because of an incorrect constant only then allow recovery here and in part (b) for a correct derivative.	ddM1A1
			(5)
	See appendix for alternatives		
(b) 	At $x = -1$, $y = 10$ $\left(\frac{dy}{dx}\right) = 1 - \frac{3}{2} + \frac{6}{1} = 3.5$	Correct value for y M1: Substitutes $x = -1$ into their expression for dy/dx A1: 3.5 oe cso	B1 M1A1
-	<i>y</i> -'10'='3.5'(<i>x</i> 1)	Uses their tangent gradient which must come from calculus with x = -1 and their numerical y with a correct straight line method. If using $y = mx + c$, this mark is awarded for correctly establishing a value for c.	Ml
Ī	2y - 7x - 27 = 0	$\pm k(2y-7x-27) = 0 \operatorname{cso}$	A1
	100%		(5)
			(10 marks)

	Appen (a)		
	(x2+4)(x-3) = x3 - 3x2 + 4x - 12	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
Way 2 Quotient	$\frac{dy}{dx} = \frac{2x(3x^2 - 6x + 4) - 2(x^3 - 3x^2 + 4x - 6x + 4)}{(2x)^2}$	12) M1: Correct application of quotient rule A1: Correct derivative	M1A1
	$=\frac{4x^3}{4x^2} - \frac{6x^2}{4x^2} + \frac{24}{4x^2} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	M1: Collects terms and divides by denominator. Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 .	ddM1A1
Way 3 Product	$y = \left(\frac{x}{2} + \frac{2}{x}\right)(x-3)\operatorname{or}(x^{2}+4)\left(\frac{1}{2} - \frac{3}{2x}\right)$	Divides one bracket by $2x$	M1
	$\frac{dy}{dx} = (x-3)\left(\frac{1}{2} - \frac{2}{x^2}\right) + \left(\frac{x}{2} + \frac{2}{x}\right) \text{ or }$ $\frac{dy}{dx} = (x^2 + 4)\frac{3}{2x^2} + 2x\left(\frac{1}{2} - \frac{3}{2x}\right)$	M1: Correct application of product rule A1: Correct derivative	MIA1
	$= \frac{3}{2} + \frac{6}{x^2} + x - 3 = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	M1: Expands and collects terms. Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 .	ddM1A1

	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{dy}{dx} = \left(x^3 - 3x^2 + 4x - 12\right) \times -\frac{1}{2}x^{-2} + \frac{1}{2}x^{-1}\left(3x^2 - 6x + 4\right)$ M1: Correct application of product rule A1: Correct derivative		M1A1
Way 4 Product	$\frac{dy}{dx} = -\frac{x}{2} + \frac{3}{2} - \frac{2}{x} + \frac{6}{x^2} + \frac{3x}{2} - 3 + \frac{2}{x} = x - \frac{3}{2} + \frac{6}{x^2}$ ddM1: Expands and collects terms Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$ and isw. Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 .		ddM1A1
	$y = \left(\frac{x}{2} + \frac{2}{x}\right)(x-3)\operatorname{or}(x^2 + 4)\left(\frac{1}{2} - \frac{3}{2x}\right)$	Divides one bracket by $2x$	M1
	$=\frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	M1: Expands	MIAI
		A1: Correct expression	MIAI
Way 5	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	ddM1: $x^n \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ If they lose the previous A1 because of an incorrect constant only then allow recovery here for a correct derivative.	ddM1A1

Question Number	Scheme		Marks
(a)	$y = 2x^3 + kx^2 + 5x + 6$		
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 6x^2 + 2kx + 5$	M1: $x^n \rightarrow x^{n-1}$ for one of the terms including $6 \rightarrow 0$ A1: Correct derivative	M1 A1
			[2
(b)	Gradient of given line is $\frac{17}{2}$	Uses or states $\frac{17}{2}$ or equivalent e.g. 8.5. Must be stated or used in (b) and not just seen as part of $y = \frac{17}{2}x + \frac{1}{2}$.	B1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=-2} = 6\left(-2\right)^2 + 2k\left(-2\right) + 5$	Substitutes $x = -2$ into their derivative (not the curve)	M1
	$"24 - 4k + 5" = "\frac{17}{2}" \Longrightarrow k = \frac{41}{8}$	dM1: Puts their expression = their $\frac{17}{2}$ (Allow BOD for 17 or -17 but not the normal gradient) and solves to obtain a value for k. Dependent on the previous method mark. A1: $\frac{41}{8}$ or $5\frac{1}{8}$ or 5.125	dM1 A1
	Note: $6x^2 + 2kx + 5 = \frac{17}{2}x + \frac{1}{2}$ scores no marks on its own but may score the first M mark if they substitute $x = -2$ into the lhs. If they rearrange this equation and then substitute $x = -2$, this scores no marks.		
(-)		M1: Substitutes $x = -2$ and their numerical k	[4
(c)	$y = -16 + 4k - 10 + 6 = 4"k" - 20 = \frac{1}{2}$	into $y = \dots$ A1: $y = \frac{1}{2}$	M1 A1
	Allow the marks for part (c) to be scored in part (b).		
			[2
(d)	$y - "\frac{1}{2}" = "\frac{17}{2}"(x - 2) \Longrightarrow -17x + 2y - 35 = 0$ or $y = "\frac{17}{2}"x + c \Longrightarrow c = \Longrightarrow -17x + 2y - 35 = 0$	M1: Correct attempt at linear equation with their 8.5 gradient (not the normal gradient) using $x = -2$ and their $\frac{1}{2}$	M1 A1
	or	A1: cao (allow any integer multiple)	
	$2y - 17x = 1 + 34 \implies -17x + 2y - 35 = 0$		
į	$2y - 17x = 1 + 34 \implies -17x + 2y - 35 = 0$		[2]

Question Number	Scheme	Marks
	$y = \sqrt{x} + \frac{4}{\sqrt{x}} + 4 = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}} + 4$	
	$x^{n} \rightarrow x^{n-1}$ Decreases any power by $x^{\frac{1}{2}} \rightarrow x^{\frac{1}{2}}$ or $x^{\frac{1}{2}} \rightarrow x^{\frac{3}{2}}$ or $x^{\frac{1}{2}} \rightarrow x^{\frac{1}{2}-1}$ for fraction	or $4 \rightarrow 0$ or M1
	$\begin{pmatrix} \frac{dy}{dx} = \\ \\ \frac{1}{2}x^{-\frac{1}{2}} + 4 \\ \\ = \\ \frac{1}{2}x^{-\frac{1}{2}} - 2x^{-\frac{3}{2}} \end{pmatrix}$ Correct derivative, simplified including indial allow $\frac{1}{2} - 1$ for $-\frac{1}{2}$ and allow $\frac{1}{2} - 1$ for $-\frac{1}{2}$ and allow $\frac{1}{2} - 1$ for $-\frac{3}{2}$	ces. E.g.
-	$x = 8 \Rightarrow \frac{dy}{dx} = \frac{1}{2}8^{-\frac{1}{2}} + 4 \times -\frac{1}{2}8^{-\frac{3}{2}}$ Attempts to substitute x = their 'changed' (even int expression that is clearly they attempt algebraic model of their dy/dx before sub this mark is still available	egrated) not y. If anipulation stitution,
	$=\frac{1}{2\sqrt{8}} - \frac{2}{(\sqrt{8})^3} = \frac{1}{2\sqrt{8}} - \frac{2}{8\sqrt{8}} = \frac{1}{8\sqrt{2}} = \frac{1}{16}\sqrt{2}$ $=\frac{1}{2\sqrt{8}} - \frac{2}{(\sqrt{8})^3} = \frac{1}{2\sqrt{8}} - \frac{2}{8\sqrt{8}} = \frac{1}{8\sqrt{2}} = \frac{1}{16}\sqrt{2}$ $=\frac{1}{16}\sqrt{2} \text{ or } \frac{8^{\frac{5}{2}}}{4\sqrt{8}} = 128\sqrt{2}$ $=\frac{1}{16}\sqrt{2} \text{ or } \frac{\sqrt{2}}{16}$	May be d from e.g. $\overline{2}$ or $\overline{16}$ e.g. $\frac{32}{512}$ mark as
	soon as a confect answer	(5 marks

Question Number	S	Scheme	
(a)(i)	$k = \left(-5\right)^2 \times 3 = 75$	M1: Attempts to find the 'y' intercept. Accept as evidence $(-5)^2 \times 3$ with or without the bracket. If they expand f(x) to polynomial form here then they must then select their constant to score this mark . May be implied by sight of 75 on the diagram. A1: $k = 75$. Must clearly be identified as k. Allow this mark even from an incorrect or incomplete expansion as long as the constant $k = 75$ is obtained. Do not isw e.g. if 75 is seen followed by $k = -75$ score M1A0.	M1A1
(ii)	$c = \frac{5}{2}$ only	$c = \frac{5}{2}$ oe (and no other values). Do not award just from the diagram – must be stated as the value of c .	B1
			(3)
(b)	$f(x) = (2x-5)^{2}(x+3) = (4x^{2}-20x+25)(x+3) = 4x^{3}-8x^{2}-35x+75$ Attempts f(x) as a cubic polynomial by attempting to square the first bracket and multiply by the linear bracket or expands $(2x-5)(x+3)$ and then multiplies by $2x-5$ Must be seen or used in (b) but may be done in part (a). Allow poor squaring e.g. $(2x-5)^{2} = 4x^{2} \pm 25$		М1
	$(f'(x) =)12x^2 - 16x - 35*$	M1: Reduces powers by 1 in all terms including any constant $\rightarrow 0$ A1: Correct proof. Withhold this mark if there have been any errors including missing brackets earlier e.g. $(2x-5)^2(x+3) = 4x^2 - 20x + 25(x+3) =$	M1A1*

ALEUNDER,			
(c)	$f'(3) = 12 \times 3^2 - 16 \times 3 - 35$	Substitutes $x = 3$ into their $f'(x)$ or the given $f'(x)$. Must be a changed function i.e. not into $f(x)$.	M1
	$12x^2 - 16x - 35 = '25'$	Sets their f'(x) or the given f'(x) = their f'(3) with a consistent f'. Dependent on the previous method mark.	dM1
	$12x^2 - 16x - 60 = 0$	$12x^{2}-16x-60 = 0 \text{ or equivalent } 3$ term quadratic e.g. $12x^{2}-16x = 60$. (A correct quadratic equation may be implied by later work). This is cso so must come from correct work - i.e. they must be using the <u>given</u> f'(x).	A1 cso
	$(x-3)(12x+20) = 0 \Longrightarrow x = \dots$	Solves 3 term quadratic by suitable method – see General Principles. Dependent on both previous method marks.	ddM1
	$x = -\frac{5}{3}$	$x = -\frac{5}{3}$ oe clearly identified. If $x = 3$ is also given and not rejected, this mark is withheld. (allow -1.6 recurring as long as it is clear i.e. a dot above the 6). This is cso and must come from correct work – i.e. they must be using the <u>given</u> f'(x).	A1 cso
			(5)
			(11 marks)
Alt (b) Product rule.	M1: Attempts product rule $p(2x-5)^2 - M1$: Multiplies of	$p = (2x-5)^{2} \times 1 + (x+3) \times 4(2x-5)$ to give an expression of the form +q(x+3)(2x-5) out and collects terms $12x^{2} - 16x - 35*$	M1 M1A1*

Therman Star