1. The curve C_{1} has equation

$$
y=x^{2}(x+2) .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b) Sketch C_{1}, showing the coordinates of the points where C_{1} meets the x-axis.
(c) Find the gradient of C_{1} at each point where C_{1} meets the x-axis.

The curve C_{2} has equation

$$
y=(x-k)^{2}(x-k+2),
$$

where k is a constant and $k>2$.
(d) Sketch C_{2}, showing the coordinates of the points where C_{2} meets the x and y axes.
2.

Figure 2
Figure 2 shows a sketch of the curve C with equation

$$
y=2-\frac{1}{x}, \quad x \neq 0 .
$$

The curve crosses the x-axis at the point A.
(a) Find the coordinates of A.
(b) Show that the equation of the normal to C at A can be written as

$$
\begin{equation*}
2 x+8 y-1=0 . \tag{6}
\end{equation*}
$$

The normal to C at A meets C again at the point B, as shown in Figure 2 .
(c) Find the coordinates of B.
3.

$$
y=5 x^{3}-6 x^{\frac{4}{3}}+2 x-3
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving each term in its simplest form.
(b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.

June 12 Q4
4. The curve C has equation

$$
y=2 x-8 \sqrt{ } x+5, \quad x \geq 0
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving each term in its simplest form.

The point P on C has x-coordinate equal to $\frac{1}{4}$.
(b) Find the equation of the tangent to C at the point P, giving your answer in the form $y=a x+b$, where a and b are constants.

The tangent to C at the point Q is parallel to the line with equation $2 x-3 y+18=0$.
(c) Find the coordinates of Q.
5.

$$
\mathrm{f}^{\prime}(x)=\frac{\left(3-x^{2}\right)^{2}}{x^{2}}, \quad x \neq 0
$$

(a) Show that $\mathrm{f}^{\prime}(x)=9 x^{-2}+A+B x^{2}$, where A and B are constants to be found.
(b) Find $\mathrm{f}^{\prime \prime}(x)$.

Given that the point $(-3,10)$ lies on the curve with equation $y=\mathrm{f}(x)$,
(c) find $\mathrm{f}(x)$.
6.

Figure 2
Figure 2 shows a sketch of the curve H with equation $y=\frac{3}{x}+4, x \neq 0$.
(a) Give the coordinates of the point where H crosses the x-axis.
(b) Give the equations of the asymptotes to H.
(c) Find an equation for the normal to H at the point $P(-3,3)$.

This normal crosses the x-axis at A and the y-axis at B.
(d) Find the length of the line segment $A B$. Give your answer as a surd.
7. Given $y=x^{3}+4 x+1$, find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=3$.
8. Differentiate with respect to x, giving each answer in its simplest form,
(a) $(1-2 x)^{2}$,
(b) $\frac{x^{5}+6 \sqrt{x}}{2 x^{2}}$.
9.

Figure 3
A sketch of part of the curve C with equation

$$
y=20-4 x-\frac{18}{x}, \quad x>0
$$

is shown in Figure 3.
Point A lies on C and has an x coordinate equal to 2 .
(a) Show that the equation of the normal to C at A is $y=-2 x+7$.

The normal to C at A meets C again at the point B, as shown in Figure 3 .
(b) Use algebra to find the coordinates of B.
10. The curve C has equation

$$
\begin{equation*}
y=\frac{\left(x^{2}+4\right)(x-3)}{2 x}, x \neq 0 . \tag{5}
\end{equation*}
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form.
(b) Find an equation of the tangent to C at the point where $x=-1$.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
June 15 Q6
11. The curve C has equation $y=2 x^{3}+k x^{2}+5 x+6$, where k is a constant.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

The point P, where $x=-2$, lies on C.
The tangent to C at the point P is parallel to the line with equation $2 y-17 x-1=0$.
Find
(b) the value of k,
(c) the value of the y coordinate of P,
(d) the equation of the tangent to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
12. Given

$$
y=\sqrt{x}+\frac{4}{\sqrt{x}}+4, \quad x>0
$$

find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=8$, writing your answer in the form $a \sqrt{2}$, where a is a rational number.
13.

Figure 2
Figure 2 shows a sketch of part of the curve $y=\mathrm{f}(x), x \in \mathbb{R}$, where

$$
\mathrm{f}(x)=(2 x-5)^{2}(x+3)
$$

(a) Given that
(i) the curve with equation $y=\mathrm{f}(x)-k, x \in \mathbb{R}$, passes through the origin, find the value of the constant k,
(ii) the curve with equation $y=\mathrm{f}(x+c), x \in \mathbb{R}$, has a minimum point at the origin, find the value of the constant c.
(b) Show that $\mathrm{f}^{\prime}(x)=12 x^{2}-16 x-35$

Points A and B are distinct points that lie on the curve $y=\mathrm{f}(x)$.
The gradient of the curve at A is equal to the gradient of the curve at B.
Given that point A has x coordinate 3
(c) find the x coordinate of point B.

