

Equations and Inequalities - Edexcel Past Exam Questions 2 MARK SCHEME

Question	Scheme	Marks
(a)	5x > 20	M1
	x > 4	A1 (2)
(b)	$x^2 - 4x - 12 = 0$	
	(x+2)(x-6)[=0]	M1
	x-6_2	A1
	x < -2, x > 6	M1, A1ft
		6 marks
	Notes M1 for reducing to the form $px > q$ with one of p or q correct	
(b)	Using $px = q$ is M0 unless > appears later on A1 $x > 4$ only 1st M1 for multiplying out and attempting to solve a 3TQ with at least 3 See General Principles for definitions of "attempt to solve" 1st A1 for 6 and -2 seen. Allow $x > 6$, $x > -2$ etc to score this mark. Values may be on a sketch.	± 4x or ± 12
	2 nd M1 for choosing the "outside region" for their critical values. Do no	
		s
	2 nd M1 for choosing the "outside region" for their critical values. Do not diagram or table – they must have chosen their "outside" regions 2 nd A1ft follow through their 2 distinct critical values. Allow "," "or" or	s a "blank" between

Question	Scheme	Marks
(a)	$x(5-x) = \frac{1}{2}(5x+4)$ (o.e.)	Ml
	$2x^2 - 5x + 4(=0)$ (o.e.) e.g. $x^2 - 2.5x + 2(=0)$	Al
	$b^2 - 4ac = (-5)^2 - 4 \times 2 \times 4$	Ml
	= $25-32$ < 0, so no roots <u>or</u> no intersections <u>or</u> no solutions	A1 (4)
(b)	Curve: Oshape and passing through (0,0) Oshape and passing through (5,0)	B1 B1
	Line: +ve gradient and no intersections with C. If no C drawn score B0	Bl
	Line passing through (0, 2) and (-0.8, 0) marked on axes	B1 (4)
		8 marks
	Notes 1 st M1 for forming a suitable equation in one variable	4
	2 nd M1 for an attempt to evaluate discriminant for their 3TQ. Allow for $b^2 > 4a$ Allow if it is part of a solution using the formula e.g. $(x =)\frac{5 \pm \sqrt{25 - 32}}{4}$ Correct formula quoted and some correct substitution or a correct expressible factorising is M0 2 nd A1 for correct evaluation of discriminant for a correct 3TQ e.g. 25 – 32 (or comment indicating no roots or equivalent. For contradictory statement	ession better) <u>and</u> a
ALT	2^{nd} M1 for attempt at completing the square $a\left[\left(x\pm\frac{b}{2a}\right)^2-q\right]+c$	
	$2^{\text{nd}} \text{ Al} \text{for} \left(x - \frac{5}{4}\right)^2 = -\frac{7}{16}$ and a suitable comment	
(b)	Coordinates must be seen <u>on</u> the diagram. Do not award if only in the bod "Passing through" means <u>not</u> stopping at and <u>not</u> touching. Allow (0, x) and (y, 0) if marked on the correct places on the correct	
	1st B1 for correct shape and passing through origin. Can be assumed if it passe intersection of axes	
	2 nd B1 for correct shape and 5 marked on x-axis	
SC	for \cap shape stopping at both (5, 0) and (0, 0) award B0B1 3 rd B1 for a line of positive gradient that (if extended) has no intersection with the extended). Must have both graphs on same axes for this mark. If no C g	
	4 th B1 for straight line passing through -0.8 on x-axis and 2 on y-axis Accept exact fraction equivalents to -0.8 or 2(e.g. 4/2)	

Question Number	Scheme	Marks	
(a)	Method 1: Attempts $b^2 - 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq k$	M1	
14.5	$b^2 - 4ac = 6^2 - 4(k+3)(k-5)$	A1	
		B1	
	$(b^2 - 4ac =)$ $-4k^2 + 8k + 96$ or $-(b^2 - 4ac =)$ $4k^2 - 8k - 96$ (with no prior algebraic errors)		
	As $b^2 - 4ac > 0$, then $-4k^2 + 8k + 96 > 0$ and so, $k^2 - 2k - 24 < 0$	A1 *	
	Method 2: Considers $b^2 > 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq k$	M1	
	$6^2 > 4(k+3)(k-5)$	A1	
	$4k^2 - 8k - 96 < 0$ or $-4k^2 + 8k + 96 > 0$ or $9 > (k+3)(k-5)$ (with no prior algebraic errors)	B1	
	and so, $k^2 - 2k - 24 < 0$ following correct work	A1 *	
(b)	Attempts to solve $k^2 - 2k - 24 = 0$ to give $k = (\Rightarrow \text{Critical values}, k = 6, -4.)$	M1	
	$k^2 - 2k - 24 < 0$ gives $-4 < k < 6$	M1 A1	
		7 marks	
	Notes		
(a)	Method 1: M1: Attempts $b^2 - 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq k$ or uses quadratic	formula	
	and has this expression under square root. (ignore > 0 , < 0 or $= 0$ for first 3 marks)		
	A1: Correct expression for $b^2 - 4ac$ - need not be simplified (may be under root sign)		
	B1: Uses algebra to manipulate result without error into one of these three term quadratics. Again under root sign in quadratic formula. If inequality is used early in "proof" may see	n may be	
	$4k^2 - 8k - 96 < 0$ and B1 would be given for $4k^2 - 8k - 96$ correctly stated.		
	A1: Applies $b^2 - 4ac > 0$ correctly (or writes $b^2 - 4ac > 0$) to achieve the result given in the No errors should be seen. Any incorrect line of argument should be penalised here. There are seven reaching the answer, either multiplication of both sides of inequality by -1 , or taking every term to of inequality. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac$ $b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \ne 1$	ral ways of o other side	
	A1: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sid again without error		
	A1: Produces result with no errors seen from initial consideration of $b^2 > 4ac$.		
(b)	M1: Uses factorisation, formula, completion of square method to find two values for k , or finds to answers with no obvious method M1: Their Lower Limit $< k <$ Their Upper Limit Allow the M mark mark for \le . (Allow $k <$ upper Limit Allow the M mark mark for \le .)		
	lower) A1: $-4 < k < 6$ Lose this mark for \le Allow (-4, 6) [not square brackets] or $k > -4$ and $k \le 6$ (1)	must be and	
	not or) Can also use intersection symbol \bigcirc NOT $k \ge -4$, $k \le 6$ (M1A0)		
	Special case: In part (a) uses $c = k$ instead of $k - 5$ - scores 0. Allow $k + 5$ for method marks		
	Special Case: In part (b) Obtaining $-6 \le k \le 4$ This is a common wrong answer. Give M1 M1 A0 special case.		
	Special Case: In part (b) Use of x instead of k - M1M1A0		
	Special Case: $-4 < k < 6$ and $k < -4$, $k > 6$ both given is M0A0 for last two marks. Do not treat	as isw	

Question Number		Scheme	Marks	•
(a)	6x + x > 1 - 8	Attempts to expand the bracket and collect x terms on one side and constant terms on the other. Condone sign errors and allow one error in expanding the bracket. Allow <, ≤,≥,= instead of >.	M1	
	$x \ge -1$	Cao	A1	
	Do not isw here	, mark their final answer.		
100000				(2
(b)	(x+3)(3x-1)[=0]	M1: Attempt to solve the quadratic to obtain two critical values		
	$(x+3)(3x-1)[=0]$ $\Rightarrow x = -3 \text{ and } \frac{1}{3}$	A1: $x = -3$ and $\frac{1}{3}$ (may be implied by their inequality). Allow all equivalent fractions for -3 and 1/3. (Allow 0.333 for 1/3)	M1A1	
		M1: Chooses "inside" region (The letter x does not need to be used here)		
	$-3 < x < \frac{1}{3}$	A1ft: Allow $x < \frac{1}{3}$ and $x > -3$ or $\left(-3, \frac{1}{3}\right)$ or $x < \frac{1}{3} \cap x > -3$. Follow through their critical values. (must be in terms of x here) Allow all equivalent fractions for -3 and 1/3. Both $\left(x < \frac{1}{3} \text{ or } x > -3\right)$ and $\left(x < \frac{1}{3}, x > -3\right)$ as a final answer score A0.	M1A1ft	
		2		(4
				[6
1		in an otherwise correct answer in (a) or (b) ed once, the first time it occurs.		

Question Number	Scheme	Marks	
(a)	$x^2 - 4k(1 - 2x) + 5k(= 0)$	Makes y the subject from the first equation and substitutes into the second equation (= 0 not needed here) or eliminates y by a correct method.	M1
	So $x^2 + 8kx + k = 0$ *	Correct completion to printed answer. There must be no incorrect statements.	Aleso
			(
(b)	$(8k)^2 - 4k$	M1: Use of $b^2 - 4ac$ (Could be in the quadratic formula or an inequality, = 0 not needed yet). There must be some correct substitution but there must be no x 's. No formula quoted followed by e.g. $8k^2 - 4k = 0$ is M0.	M1 A1
		A1: Correct expression. Do not condone missing brackets unless they are implied by later work but can be implied by $(8k)^2 > 4k$ etc.	
	$k = \frac{1}{16} (\text{oe})$	Cso (Ignore any reference to $k = 0$) but there must be no contradictory earlier statements. A fully correct solution with no errors.	A1
			(
(b) Way 2	$\Rightarrow x^2 + 8kx + k = (x + \sqrt{k})^2$	M1: Correct strategy for equal roots	
Equal roots	$\Rightarrow 8k = 2\sqrt{k}$	A1: Correct equation	M1A1
	$k = \frac{1}{16} \text{ (oe)}$	Cso (Ignore any reference to $k = 0$)	A1
(b)	Completes the Square $x^{2} + 8kx + k = (x + 4k)^{2} - 16k^{2} + k$	M1: $(x \pm 4k)^2 \pm p \pm k$, $p \neq 0$	
Way 3	$\Rightarrow 16k^2 - k = 0$	A1: Correct equation	M1A1
	$k = \frac{1}{16} \text{ (oe)}$	Cso (Ignore any reference to $k = 0$)	A1
			(3
(c)	$x^{2} + \frac{1}{2}x + \frac{1}{16} = 0$ so $(x + \frac{1}{4})^{2} = 0 \Rightarrow x =$	Substitutes their value of k into the given quadratic and attempt to solve their 2 or 3 term quadratic as far as $x = (may be implied by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x.$	M1
	$x = -\frac{1}{4}$, $y = 1\frac{1}{2}$	First A1 one answer correct, second A1 both answers correct.	A1A1
	Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \Rightarrow$	$x = -\frac{1}{4}, \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \frac{1}{2} \text{ allow M1A1A0}$	
			(3
			[8

Question Number	Scheme	Notes	Mari	ks
	Ignore any references	to the units in this question		
(a)	length is $x + 4$	May be implied	B1	
(4)	$x+x+x+4+x+4>19.2 \Rightarrow x>$	$2x + 2(x \pm 4) > 19.2$ and proceeds to $x >$ (Accept 'invisible' brackets) Attempts 2 widths + 2 lengths > 19.2 leading to $x >$	M1	
	E.g. $x+x+4x+4x>19$	$.2 \Rightarrow x > 1.92 \text{ scores B0M1A0}$		
	x>2.8*	Achieves $x > 2.8$ with no errors	A1(*)	
				(
		b) and (c) together		
(b)(i)	x(x+4) < 21	Cao	B1	
b(ii)	$x^2 + 4x - 21 < 0$ $(x+7)(x-3) < 0 \Rightarrow x =$	Multiply out lhs, produce $3TQ = 0$ and attempt to solve leading to $x =$ according to general guidelines	M1	
		M1: Attempts the 'inside' for their critical values (may be from a 2TQ here)		
	Either $-7 < x < 3$ or $0 < x < 3$	A1: Accept either $-7 < x < 3$ or $0 < x < 3$ or $(x > -7 \text{ and } x < 3)$ or $(x > 0 \text{ and } x < 3)$ but not e.g. $(x > -7, x < 3)$ or $(x > -7 \text{ or } x < 3)$ (There is no specific need for them to realise $x > 0$)	M1A1	
	Note that many	candidates stop here		
				(
(c)	2.8 < x < 3	Follow through their answers to (a) and (b) Provided "their 3" > 2.8	B1ft	
				(
				[
		xamples		
	$x(x-4) < 21 \Rightarrow x^2 - 4x - 21 < 0$ (x-7)(x+3) < 0, x = 7, x = -3 -3 < x < 7 or 0 < x < 7 2.8 < x < 7 Scores B0M1M1A0B1ft	$x \times 4x < 21 \Rightarrow 4x^{2} - 21 < 0$ $(2x - \sqrt{21})(2x + \sqrt{21}) < 0, \ x = \pm \frac{\sqrt{21}}{2}$ $-\frac{\sqrt{21}}{2} < x < \frac{\sqrt{21}}{2} \text{ or } 0 < x < \frac{\sqrt{21}}{2}$ $2.8 < x < \frac{\sqrt{21}}{2}$		
		Scores B0M0M1A0B0		

Question Number	Scheme	Marks
(a)	$y = x + 2 \Rightarrow x^2 + 4(x + 2)^2 - 2x = 35$	M1
	Alternative: $\frac{2x - x^2 + 35}{4} = (x + 2)^2 \text{ or } \sqrt{\frac{2x - x^2 + 35}{4}} = (x + 2)$	
	$5x^2 + 14x - 19 = 0$	M1
	$(5x+19)(x-1) = 0 \Rightarrow x =$	dM1
	$x = -\frac{19}{5}, x = 1$	A1 for both
	$y=-\frac{9}{5}, y=3$	M1
	Coordinates are $\left(-\frac{19}{5}, -\frac{9}{5}\right)$ and $(1, 3)$	A1
		(6)
(b)	$d^{2} = (1 - \frac{19}{5})^{2} + (3 - \frac{9}{5})^{2} \text{ or}$ $d = \sqrt{(1 - \frac{19}{5})^{2} + (3 - \frac{9}{5})^{2}}$	M1A1ft
	$d = \frac{24}{5}\sqrt{2}$	A1cao
		(3)
		[9]

Question Number Scheme (a) $3x-7>3-x$ $4x>10$	Scheme	Marks
		20
		M1
	$x > 2.5$, $x > \frac{5}{2}$, $\frac{5}{2} < x$ o.e.	A1
		(2
	(b) Obtain $x^2 - 9x - 36$ and attempt to solve $x^2 - 9x - 36 = 0$	
	e.g. $(x-12)(x+3) = 0$ so $x = $, or $x = \frac{9 \pm \sqrt{81+144}}{2}$	M1
	12, -3	A1
	$-3 \le x \le 12$	M1A1
		(4
	(c) 2.5 < x ≤ 12	Alcso
	Service Servic	(1
		(7 marks)

Notes

(a) M1 Reaching px > q with one or both of p or q correct. Also give for -4x < -10

A1 Cao x > 2.5 o.e. Accept alternatives to 2.5 like $2\frac{1}{2}$ and $\frac{5}{2}$ even allow $\frac{10}{4}$ and allow $\frac{5}{2} < x$ o.e. This answer must occur and be credited as part (a) A correct answer implies M1A1

Mark parts (b) and (c) together.

(b) M1 Rearrange 3TQ ≤ 0 or 3TQ = 0 or even 3TQ > 0 Do not worry about the inequality at this stage AND attempt to solve by factorising, formula or completion of the square with the usual rules (see notes)

A1 12 and -3 seen as critical values

M1 Inside region for their critical values – must be stated – not just a table or a graph

A1 $-3 \le x \le 12$ Accept $x \ge -3$ and $x \le 12$ or [-3, 12]

For the A mark: Do not accept $x \ge -3$ or $x \le 12$ nor $-3 \le x \le 12$ nor (-3, 12) nor $x \ge -3$, $x \le 12$. However allow recovery if they follow these statements by a correct statement, either in (b) or as they start part (c)

N.B. $-3 \le 0 \le 12$ and $x \ge -3$, $x \le 12$ are poor notation and get M1A0 here.

(c) A1 cso $2.5 < x \le 12$ Accept x > 2.5 and $x \le 12$ Allow $\frac{10}{4}$ Do not accept x > 2.5 or $x \le 12$

Accept (2.5, 12] A graph or table is not sufficient. Must follow correct earlier work – except for special case

Special case (c) x > 2.5, $x \le 12$; $2.5 < 0 \le 12$ are poor notation – but if this poor notation has been penalised in (b) then allow A1 here. Any other errors are penalised in both (b) and (c).

Question Number	Scheme	Marks
(a).	P = 20x + 6 o.e	В1
	$20x + 6 > 40 \Rightarrow x >$	M1
	x > 1.7	A1*
	N. 1 . 45 175. 1	(3)
	Mark parts (b) and (c) together	
(b)	$A = 2x(2x+1) + 2x(6x+3) = 16x^{2} + 8x$	B1
	$16x^2 + 8x - 120 < 0$	M1
	Try to solve their $2x^2 + x - 15 = 0$ e.g. $(2x - 5)(x + 3) = 0$ so $x = 0$	M1
	Choose inside region	M1
	$-3 < x < \frac{5}{2}$ or $0 < x < \frac{5}{2}$ (as x is a length)	A1
(c)		(5)
	$1.7 < x < \frac{5}{2}$	B1cao
		(1)
		(9 marks)

- Correct expression for perimeter but may not be simplified so accept (a) B₁ 2x + 1 + 2x + 4x + 2 + 2x + 6x + 3 + 4x or 2(10x + 3) or any equivalent
 - M1: Set P > 40 with their linear expression for P (this may not be correct but should be a sum of sides) and manipulate to get x > ...
 - A1* cao x > 1.7. This is a given answer, there must not be any errors, but accept $1.7 \le x$
- Marks parts (b) and (c) together (b)
 - Writes a correct statement in x for the area. It need not be simplified. You may isw Amongst numerous possibilities are.

$$2x(2x+1)+2x(6x+3)$$
, $16x^2+8x$, $4x(6x+3)-2x(4x+2)$, $4x(2x+1)+2x(4x+2)$

- Sets their quadratic expression < 120 and collects on one side of the inequality M1
- For an attempt to solve a 3 Term quadratic equation producing two solutions by factorising, M1 formula or completion of the square with the usual rules (see notes)
- M1 For choosing the 'inside' region. Can follow through from their critical values - must be stated – not just a table or a graph. Can also be implied by 0 ≤ x ≤ upper value
- $-3 < x < \frac{5}{2}$. Accept x > -3 and x < 2.5 or (-3, 2.5)

As x is a width, accept
$$0 < x < \frac{5}{2}$$
 Also accept $\frac{10}{4}$ or 2.5 instead of $\frac{5}{2}$. \leq would be M1A0

Allow this final answer to part (b) to appear as answer to part (c) This would score final M1A1 in (b) then B0 in (c)

B1cao 1.7 < $x < \frac{5}{2}$. Must be correct. [This does not imply final M1 in (b)]

Question Number	5	Scheme	Marks
	y-2x-4=0	$4x^2 + y^2 + 20x = 0$	
	$y = 2x + 4 \Rightarrow 4x^{2} + (2x + 4)^{2} + 20x = 0$ or $2x = y - 4 \text{ or } x = \frac{y - 4}{2}$ $\Rightarrow (y - 4)^{2} + y^{2} + 10(y - 4) = 0$	Attempts to rearrange the linear equation to $y =$ or $2x =$ and attempts to fully substitute into the second equation.	M1
	$8x^{2} + 36x + 16 = 0$ or $2y^{2} + 2y - 24 = 0$	M1: Collects terms together to produce quadratic expression = 0. The '= 0' may be implied by later work. A1: Correct three term quadratic equation in x or y. The '= 0' may be implied by later work.	M1 A1
3	$(4)(2x+1)(x+4) = 0 \Rightarrow x =$ or $(2)(y+4)(y-3) = 0 \Rightarrow y =$	Attempt to factorise and solve or complete the square and solve or uses a correct quadratic formula for a 3 term quadratic.	M1
÷	x = -0.5, x = -4 or $y = -4, y = 3$	Correct answers for either both values of x or both values of y (possibly un-simplified)	A1 cso
	Sub into $y = 2x + 4$ or Sub into $x = \frac{y - 4}{2}$	Substitutes at least one of their values of x into a correct equation as far as $y =$ or substitutes at least one of their values of y into a correct equation as far as $y =$	M1
	y = 3, y = -4 and x = -4, x = -0.5	Fully correct solutions and simplified. Pairing not required. If there are any extra values of x or y, score A0.	A1
			(7 marks)

Special C	Special Case: Uses $y = -2x - 4$		
$y = 2x + 4 \Rightarrow 4x^2 + (-2x - 4)^2 + 20x =$	0	M1	
$8x^2 + 36x + 16 = 0$		M1A1	
$(4)(2x+1)(x+4) = 0 \Rightarrow x =$		M1	
x = -0.5, x = -4		A0	
Sub into $y = 2x + 4$	Sub into $y = -2x - 4$ is M0	M1	
y = 3, y = -4 and x = -4, x = -0.5		A0	

Question Number		Sche	eme	Marks
(a)	$b^{2} - 4ac < 0 \Rightarrow e.g$ $4^{2} - 4(p-1)(p-5) < 0 > 4^{2} - 4(p-1)(p-5)$ $4^{2} < 4(p-1)(p-5) > 4$	two of quadra examp 5) or Must be equation or M1.Th	ttempts to use $b^2 - 4ac$ with at least a , b or c correct. May be in the stic formula. Could also be, for ale, comparing or equating b^2 and $4ac$, be considering the given quadratic on. Inequality sign not needed for this nere must be no x terms. For a correct un-simplified inequality not the given answer	M1A1
	$4 < p^2 - 6p$			
	$p^2 - 6p + 1$		Correct solution with no errors that includes an expansion of $(p-1)(p-5)$	A1*
		Ş.,,		(3)
(b)	$p^2 - 6p + 1 = 0 \Rightarrow p$	= their of	attempt to solve $p^2 - 6p + 1 = 0$ (not quadratic) leading to 2 solutions for p t allow attempts to factorise – must be the quadratic formula or completing hare)	M1
	$p = 3 \pm \sqrt{8}$	$=\frac{6\pm\sqrt{32}}{2}$ (Ma)	y equivalent correct expressions e.g. y be implied by their inequalities) t be a single number not e.g. 36 - 4	A1
Ĺ	The second secon		e for solving the given quadratic	
	p<3-√8 or p		M1: Chooses outside region – not dependent on the previous method mark A1: $p < 3 - \sqrt{8}$, $p > 3 + \sqrt{8}$ or equivalent e.g. $p < \frac{6 - \sqrt{32}}{2}$, $p > \frac{6 + \sqrt{32}}{2}$ $(-\infty, 3 - \sqrt{8}) \cup (3 + \sqrt{8}, \infty)$ Allow ",", "or" or a space between the answers but do not allow $p < 3 - \sqrt{8}$ and $p > 3 + \sqrt{8}$ (this scores M1A0) Apply ISW if necessary.	M1A1

A correct solution to the quadratic followed by $p > 3 \pm \sqrt{8}$ so	cores M1A1M0A0
$3 + \sqrt{8} scores M1A0$	
Allow candidates to use x rather than p but must be in terms	of p for the final Al
	(4
	(7 marks

Question Number	Scheme	Notes	Marks
	V	VAY 1	
	y = -4x - 1 $\Rightarrow (-4x - 1)^2 + 5x^2 + 2x = 0$	Attempts to makes y the subject of the linear equation and substitutes into the other equation. Allow slips e.g. substituting $y = -4x + 1$ etc.	M1
	$21x^2 + 10x + 1 = 0$	Correct 3 term quadratic (terms do not need to be all on the same side). The "= 0" may be implied by subsequent work.	A1
	$(7x+1)(3x+1) = 0 \Rightarrow (x=)-\frac{1}{7}, -\frac{1}{3}$	dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one value for x. Dependent on the first method mark.	dM1 A1
	$(7x+1)(3x+1)=0 \rightarrow (x=)-\frac{7}{7},-\frac{3}{3}$	A1: $(x =) - \frac{1}{7}$, $-\frac{1}{3}$ (two separate correct exact answers). Allow exact equivalents e.g. $(x =) - \frac{6}{42}$, $-\frac{14}{42}$	uwii Ai
	$y = -\frac{3}{7}, \frac{1}{3}$	M1: Substitutes to find at least one y value (Allow substitution into their rearranged equation above but not into an equation that has not been seen earlier). You may need to check here if there is no working and x values are incorrect.	M1 A1
		A1: $y = -\frac{3}{7}$, $\frac{1}{3}$ (two correct exact answers) Allow exact equivalents e.g. $y = -\frac{18}{42}$, $\frac{14}{42}$	

3	Coordinates do n	ot need to be paired	
		rearranged to $y = 4x + 1$, this gives the correct ses, if it is not already lost, deduct the final A1.	
			[6]
	W	AY 2	0.
	$x = -\frac{1}{4}y - \frac{1}{4}$ $\Rightarrow y^2 + 5(-\frac{1}{4}y - \frac{1}{4})^2 + 2(-\frac{1}{4}y - \frac{1}{4}) = 0$	Attempts to makes x the subject of the linear equation and substitutes into the other equation. Allow slips in the rearrangement as above.	M1
	$\frac{21}{16}y^2 + \frac{1}{8}y - \frac{3}{16} = 0 \left(21y^2 + 2y - 3 = 0\right)$	Correct 3 term quadratic (terms do not need to be all on the same side). The "= 0" may be implied by subsequent work.	A1
	$(7y+3)(3y-1)=0 \Rightarrow (y=)-\frac{3}{7}, \frac{1}{3}$	dM1: Solves a 3 term quadratic by the usual rules (see general guidance) to give at least one value for y. Dependent on the first method mark. A1: $(y =) - \frac{3}{7}$, $\frac{1}{3}$ (two separate correct exact answers). Allow exact equivalents e.g. $(y =) - \frac{18}{42}$, $\frac{14}{42}$	dM1 A1
	$x = -\frac{1}{7}, -\frac{1}{3}$	M1: Substitutes to find at least one x value (Allow substitution into their rearranged equation above but not into an equation that has not been seen earlier). You may need to check here if there is no working and y values are incorrect. A1: $x = -\frac{1}{7}$, $-\frac{1}{8}$ (two correct exact answers) Allow exact equivalents e.g. $x = -\frac{6}{42}$, $-\frac{14}{42}$	M1 A1
	Coordinates do not need to be paired		8
(a) (a)	Note that if the linear equation is explicitly r	earranged to $x = (y + 1)/4$, this gives the correct ses, if it is not already lost, deduct the final A1.	
			[6]
3	(4	6 marks

Question Number	Scheme	Notes	Marks
(a)	$2px^{2} - 6px + 4p'' = "3x - 7$ or $y = 2p\left(\frac{y+7}{3}\right)^{2} - 6p\left(\frac{y+7}{3}\right) + 4p$	Either: Compares the given quadratic expression with the given linear expression using $<$, $>$, $=$, \neq (May be implied) or Rearranges $y = 3x - 7$ to make x the subject and substitutes into the given quadratic	M1
	$\frac{\text{Examples}}{2px^2 - 6px + 4p - 3x + 7(=0)}, -2px^2 + 6px - 4p + 3x - 7(=0)$ $2p\left(\frac{y+7}{3}\right)^2 - 6p\left(\frac{y+7}{3}\right) + 4p - y(=0), 2py^2 + (10p-9)y + 8p(=0)$ $y = 2px^2 - 6px + 4p - 3x + 7$		dM1
		ng sign errors only. Ignore > 0, < 0, = 0 etc.	
-	E.g. $b^{2} - 4ac = (-6p - 3)^{2} - 4(2p)(4p + 7)$ $b^{2} - 4ac = (10p - 9)^{2} - 4(2p)(8p)$	Attempts to use $b^2 - 4ac$ with their a , b and c where $a = \pm 2p$, $b = \pm (-6p \pm 3)$ and $c = \pm (4p \pm 7)$ or for the quadratic in y , $a = \pm 2p$, $b = \pm (10p \pm 9)$ and $c = \pm 8p$. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no x 's or y 's. Dependent on both method marks.	ddM1
	$4p^2 - 20p + 9 < 0 *$	Obtains printed answer with no errors seen (Allow $0 > 4p^2 - 20p + 9$) but this < 0 must been seen at some stage before the last line.	A1*
		\$2	

			8 marks
<u> </u>	Allow working in terms of x in (b) but the a	nswer must be in terms of p for the final A mark.	[4
	Allow equivalent values e.g. $\frac{36}{8}$ for $4\frac{1}{2}$	A1: Allow $p \in (\frac{1}{2}, 4\frac{1}{2})$ or just $(\frac{1}{2}, 4\frac{1}{2})$ and allow $p > \frac{1}{2}$ and $p < 4\frac{1}{2}$ and $4\frac{1}{2} > p > \frac{1}{2}$ but $p > \frac{1}{2}$, $p < 4\frac{1}{2}$ scores M1A0 $\frac{1}{2} > p > 4\frac{1}{2}$ scores M0A0	M1A1
	$\frac{1}{2}$	M1: Chooses 'inside' region i.e. Lower Limit $ Upper Limit or e.g. Lower Limit \le p \le Upper Limit$	
	$p = \frac{9}{2}, \frac{1}{2}$	Both correct. May be implied by e.g. $p < \frac{9}{2}$, $p < \frac{1}{2}$. Allow equivalent values e.g. $4.5, \frac{36}{8}, 0.5$ etc. If they use the quadratic formula allow $\frac{20\pm16}{8}$ for this mark but not $\sqrt{256}$ for 16 and allow e.g. $\frac{5}{2}\pm2$ if they complete the square.	A1
(b)	$(2p-9)(2p-1)=0 \Rightarrow p=$ to obtain $p=$ Attempt to solve the <u>given</u> quadratic to find 2 values for p . See general guidance.		M1

Question Number	Scheme		Marks
(a)(i)	\ †	B1: Straight line with negative gradient anywhere even with no axes.	B1
	(0, c)	B1: Straight line with an intercept at $(0, c)$ or just c marked on the positive y -axis provided the line passes through the positive y -axis. Allow $(c, 0)$ as long as it is marked in the correct place. Allow $(0, c)$ in the body of the script but in any ambiguity, the sketch has precedence. Ignore any intercepts with the x -axis.	B1

(b)	$\frac{1}{x} + 5 = -3x + c \Rightarrow 1 + 5x = -3x^2 + cx$ $\Rightarrow 3x^2 + 5x - cx + 1 = 0$	Sets $\frac{1}{x} + 5 = -3x + c$, attempts to multiply by x and collects terms (to one side). Allow e.g. ">" or "<" for "=" . At least 3 of the terms must be multiplied by x , e.g. allow one slip. The '=0' may be implied by subsequent work and provided correct work follows, full marks are still possible in (b).	M1
	$b^2 - 4ac = (5 - c)^2 - 4 \times 1 \times 3$	Attempts to use $b^2 - 4ac$ with their a , b and c from their equation where $a = \pm 3$, $b = \pm 5 \pm c$ and $c = \pm 1$. This could be as part of the quadratic formula or as $b^2 \le 4ac$ or as $b^2 \ge 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no x 's.	M1
	$(5-c)^2 > 12*$	Completes proof with no errors or incorrect statements and with the ">" appearing correctly before the final answer, which could be from $b^2 - 4ac > 0$. Note that the statement $3x^2 + 5x - cx + 1 > 0$ or starting with e.g. $\frac{1}{x} + 5 > -3x + c$ would be an error.	A1*
	Note: A minimum for (b) could be,		
	$\frac{1}{x} + 5 = -3x + c \Rightarrow 3x^2 + 5x - cx + 1 (= 0) (M1)$		
	$b^2 > 4ac \Longrightarrow (5-c)^2 > 12 (\text{M1A1})$		
	If $b^2 > 4ac$ is not seen then $4 \times 3 \times 1$ needs to be seen explicitly.		
			(3)

(c)	$(5-c)^2 = 12 \Rightarrow (c=)5 \pm \sqrt{12}$ M1: Attempts to find critical value using the	90; QC VCCC
	or $(5-c)^2 = 12 \Rightarrow c^2 - 10c + 13 = 0$ or $(5-c)^2 = 12 \Rightarrow c^2 - 10c + 13 = 0$ or by expanding and (See General Princip may be implied)	solving a 3TQ
	$\Rightarrow (c=) \frac{-10 \pm \sqrt{(-10)^2 - 4 \times 13}}{2}$ A1: Correct critical v form. Note that $\sqrt{12}$ $2\sqrt{3}$.	
	Chooses outside reginance $c < "5 - \sqrt{12}"$, $c > "5 + \sqrt{12}"$ Chooses outside reginance $c > 0$ can be ignorable mark. So look for $c < 0$ their $5 + \sqrt{12}$. The scored from $5 + \sqrt{12}$ for $5 - \sqrt{12} > c > 5 + \sqrt{12}$ to be taken from their from a diagram.	ored for this their $5-\sqrt{12}$, is could be $< c < 5-\sqrt{12}$ or . Evidence is answers not
	Correct ranges include $0 < c < 5 - \sqrt{12}$, $c > 5 + \sqrt{12}$ $0 < c < 5 - \sqrt{12}$, $c > 5 + \sqrt{12}$ Critical values may be but must be at least $\frac{10 + \sqrt{48}}{2}, \frac{10 - \sqrt{48}}{2}$ $0 < c < 5 - \sqrt{12} \text{ and would score M1A0.}$	shown or each tely or e.g. $(\overline{2}, \infty)$. The eun-simplified A1 Note that $c > 5 + \sqrt{12}$
	Allow the use of x rather than c in (c) but the final answ terms of c .	er must be in
		(4
		(11 marks