Graphs and Transformations - Edexcel Past Exam Questions 2

1.

Figure 1
Figure 1 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=x^{2}(9-2 x) .
$$

There is a minimum at the origin, a maximum at the point $(3,27)$ and C cuts the x-axis at the point A.
(a) Write down the coordinates of the point A.
(b) On separate diagrams sketch the curve with equation
(i) $y=\mathrm{f}(x+3)$,
(ii) $y=\mathrm{f}(3 x)$.

On each sketch you should indicate clearly the coordinates of the maximum point and any points where the curves cross or meet the coordinate axes.

The curve with equation $y=\mathrm{f}(x)+k$, where k is a constant, has a maximum point at $(3,10)$.
(c) Write down the value of k.
2.

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\frac{2}{x}, x \neq 0$.
The curve C has equation $y=\frac{2}{x}-5, x \neq 0$, and the line l has equation $y=4 x+2$.
(a) Sketch and clearly label the graphs of C and l on a single diagram.

On your diagram, show clearly the coordinates of the points where C and l cross the coordinate axes.
(b) Write down the equations of the asymptotes of the curve C.
(c) Find the coordinates of the points of intersection of $y=\frac{2}{x}-5$ and $y=4 x+2$.
3.

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x)=(x+3)^{2}(x-1), \quad x \in \mathbb{R} .
$$

The curve crosses the x-axis at $(1,0)$, touches it at $(-3,0)$ and crosses the y-axis at $(0,-9)$.
(a) Sketch the curve C with equation $y=\mathrm{f}(x+2)$ and state the coordinates of the points where the curve C meets the x-axis.
(b) Write down an equation of the curve C.
(c) Use your answer to part (b) to find the coordinates of the point where the curve C meets the y-axis.
4.

Figure 1
Figure 1 shows a sketch of the curve C with equation

$$
y=\frac{1}{x}+1, \quad x \neq 0 .
$$

The curve C crosses the x-axis at the point A.
(a) State the x-coordinate of the point A.

The curve D has equation $y=x^{2}(x-2)$, for all real values of x.
(b) On a copy of Figure 1, sketch a graph of curve D. Show the coordinates of each point where the curve D crosses the coordinate axes.
(c) Using your sketch, state, giving a reason, the number of real solutions to the equation

$$
x^{2}(x-2)=\frac{1}{x}+1 .
$$

5.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=\mathrm{f}(x)$. The curve has a maximum point A at $(-2,4)$ and a minimum point B at $(3,-8)$ and passes through the origin O.

On separate diagrams, sketch the curve with equation
(a) $y=3 \mathrm{f}(x)$,
(b) $y=\mathrm{f}(x)-4$.

On each diagram, show clearly the coordinates of the maximum and the minimum points and the coordinates of the point where the curve crosses the y-axis.

June 16 Q4
6. (a) On separate axes sketch the graphs of
(i) $y=-3 x+c$, where c is a positive constant,
(ii) $y=\frac{1}{x}+5$

On each sketch show the coordinates of any point at which the graph crosses the y-axis and the equation of any horizontal asymptote.

Given that $y=-3 x+c$, where c is a positive constant, meets the curve $y=\frac{1}{x}+5$ at two distinct points,
(b) show that $(5-c)^{2}>12$
(c) Hence find the range of possible values for c.

