Integration - Edexcel Past Exam Questions 2 MARK SCHEME

Question 1

Question	Scheme	Marks
	$[f(x) =]\frac{3x^3}{3} - \frac{3x^2}{2} + 5x[+c] \qquad \underline{\text{or}} \left\{ x^3 - \frac{3}{2}x^2 + 5x(+c) \right\}$	M1A1
	10 = 8 - 6 + 10 + c $c = -2$	M1 A1
	c = -2 $f(1) = 1 - \frac{3}{2} + 5$ " -2 " = $\frac{5}{2}$ (o.e.)	Alft (5)
		5 marks
	Notes	
	1st M1 for attempt to integrate $x^n o x^{n+1}$ 1st A1 all correct, possibly unsimplified. Ignore $+c$ here. 2nd M1 for using $x = 2$ and $f(2) = 10$ to form a linear equation in c . A They should be substituting into a changed expression 2nd A1 for $c = -2$ 3rd A1ft for $\frac{9}{2} + c$ Follow through their numerical $c \in 0$ This mark is dependent on 1st M1 and 1st A1 only.	llow sign errors.

Question Number	Scheme	Marks
	$\left\{ \int \left(6x^2 + \frac{2}{x^2} + 5 \right) dx \right\} = \frac{6x^3}{3} + \frac{2x^{-1}}{-1} + 5x \left(+ c \right)$	M1 A1
	$= 2x^3 - 2x^{-1}; + 5x + c$	A1; A1
	Notes	
	M1: for some attempt to integrate a term in x: $x^n \rightarrow x^{n+1}$	10 T
	So seeing either $6x^2 \to \pm \lambda x^3$ or $\frac{2}{x^2} \to \pm \mu x^{-1}$ or $5 \to 5x$ is M1.	
	1 st A1: for a correct un-simplified x^3 or x^{-1} (or $\frac{1}{x}$) term.	
	2^{nd} A1: for both x^3 and x^{-1} terms correct and simplified on the same line. Ie. $2x^3 - 2x^{-1}$	or $2x^3 - \frac{2}{x}$.
	3^{rd} A1: for $+5x+c$. Also allow $+5x^1+c$. This needs to be written on the same line.	
	Ignore the incorrect use of the integral sign in candidates' responses.	
	Note: If a candidate scores M1A1A1A1 and their answer is NOT ON THE SAME LINE the final accuracy mark.	n withhold the

Question Number	Scheme	Mark	s	
	$P(4, -1)$ lies on C where $f'(x) = \frac{1}{2}x - \frac{6}{\sqrt{x}} + 3$, $x > 0$			
(a)	$f'(4) = \frac{1}{2}(4) - \frac{6}{\sqrt{4}} + 3 = 2$	M1; A1		
	T: $y1 = 2(x - 4)$	dM1		
	T: $y = 2x - 9$	A1	[4	
4.	$x^{l+1} = 6x^{-\frac{1}{2}+1}$			
(b)	$f(x) = \frac{x^{1+1}}{2(2)} - \frac{6x^{-\frac{1}{2}+1}}{(\frac{1}{2})} + 3x(+c)$ or equivalent.	M1 A1		
	$\{f(4) = -1 \Rightarrow\} \frac{16}{4} - 12(2) + 3(4) + c = -1$	dM1		
	$\{4-24+12+c=-1 \implies c=7\}$			
	So, $\{f(x) = \}$ $\frac{x^2}{2(2)} - \frac{6x^{\frac{1}{2}}}{(\frac{1}{2})} + 3x + 7$	A1 cso		
	$\left\{ \text{NB: } \mathbf{f}(x) = \frac{x^2}{4} - 12\sqrt{x} + 3x + 7 \right\}$		[4	
	143 4 1244 134 1			
	Notes		,	
(a)	1 st M1: for clear attempt at f'(4).			
	1st A1: for obtaining 2 from f'(4).			
	2nd dM1: for $y-1=(\text{their } f'(4))(x-4)$ or $\frac{y-1}{x-4}=(\text{their } f'(4))$			
	or full method of $y = mx + c$, with $x = 4$, $y = -1$ and their $f'(4)$ to find a value for c .			
	Note: this method mark is dependent on the first method mark being awarded. 2^{nd} A1: for $y = 2x - 9$ or $y = -9 + 2x$			
	Note: This work needs to be contained in part (a) only.			
(b)	1 st M1: for a clear attempt to integrate f'(x) with at least one correct application of			
	$x^n \to x^{n+1}$ on $f'(x) = \frac{1}{2}x - \frac{6}{\sqrt{x}} + 3$.			
	So seeing either $\frac{1}{2}x \rightarrow \pm \lambda x^{1+1}$ or $-\frac{6}{\sqrt{x}} \rightarrow \pm \mu x^{-\frac{1}{2}+1}$ or $3 \rightarrow 3x^{0+1}$ is M1.			
	1^{st} A1: for correct un-simplified coefficients and powers (or equivalent) with or without $+c$.			
	2^{nd} dM1: for use of $x = 4$ and $y = -1$ in an integrated equation to form a linear equation in c equal to -1.			
	ie: applying $f(4) = -1$. This mark is dependent on the first method mark being aw	arded.		
	A1: For $\{f(x)=\}$ $\frac{x^2}{2(2)} - \frac{6x^{\frac{1}{2}}}{(\frac{1}{2})} + 3x + 7$ stated on one line where coefficients can be un-	simplified (or	
	simplified, but must contain one term powers. Note this mark is for correct solution			
	Note: For a candidate attempting to find $f(x)$ in part (a)			
	If it is clear that they understand that they are finding $f(x)$ in part (a); ie. by writing $f(x) =$ of you can give credit for this working in part (b).	or $y = \dots$ th	ien	

Question Number	Scheme	Marks
	$\left(\frac{dy}{dx}\right) = -x^3 + 2^n x^{-2} - \left(\frac{5}{2}\right)^n x^{-3}$	M1
	$(y =) \qquad -\frac{1}{4}x^4 + \frac{"2"x^{-1}}{(-1)} - "\left(\frac{5}{2}\right)"\frac{x^{-2}}{(-2)} (+c)$ Raises power correctly on any one term. Any two follow through terms correct. $(y =) \qquad -\frac{1}{4}x^4 + \frac{2x^{-1}}{(-1)} - \frac{5}{2}\frac{x^{-2}}{(-2)} (+c)$ This is not follow through – must be correct	M1 A1ft
	Given that $y = 7$, at $x = 1$, then $7 = -\frac{1}{4} - 2 + \frac{5}{4} + c \implies c =$	M1
	So, $(y =)$ $-\frac{1}{4}x^4 - 2x^{-1} + \frac{5}{4}x^{-2} + c$, $c = 8$ or $(y =) -\frac{1}{4}x^4 - 2x^{-1} + \frac{5}{4}x^{-2} + 8$	A1 [6
		6 marks
	Notes	

Question Number	Sc	heme	Marks
	$(\int =)\frac{10x^5}{5} - \frac{4x^2}{2}, -\frac{3x^{\frac{1}{2}}}{\frac{1}{2}}$	M1: Some attempt to integrate: $x^n \to x^{n+1}$ on at least one term. (not for + c) (If they think $\frac{3}{\sqrt{x}}$ is $3x^{\frac{1}{2}}$ you can still award the method mark for $\frac{1}{x^{\frac{1}{2}}} \to x^{\frac{3}{2}}$ A1: $\frac{10x^5}{5}$ and $\frac{-4x^2}{2}$ or better A1: $-\frac{3x^{\frac{1}{2}}}{\frac{1}{2}}$ or better	M1A1, A1
	$= 2x^5 - 2x^2 - 6x^{\frac{1}{2}} + c$	Each term correct and simplified and the + c all appearing together on the same line. Allow \sqrt{x} for $x^{\frac{1}{2}}$. Ignore any spurious integral or signs and/or dy/dx's.	A1
		correct answer and then e.g. divide by 2 the last mark.	
			[4

Question Number		Scheme	Marks
(a)	$(3-x^2)^2 = 9 - 6x^2 + x^4$	An attempt to expand the numerator obtaining an expression of the form $9 \pm px^2 \pm qx^4$, $p, q \neq 0$	M1
	$9x^{-2} + x^2$	Must come from $\frac{9+x^4}{x^2}$	A1
	-6	Must come from $\frac{-6x^2}{x^2}$	A1
		as $(3x^{-1} - x)^2$ and attempts to expand = M1	
	Alternative 2: Sets $(3 - x^2)^2 = 9 +$	$Ax^2 + Bx^4$, expands $(3-x^2)^2$ and compares then A1A1 as in the scheme.	
			(
	(f'(x)	$=9x^{-2}-6+x^2$	
(b)	$-18x^{-3} + 2x$	M1: $x^n \to x^{n-1}$ on separate terms at least once. Do not award for $A \to 0$ (Integrating is M0) A1ft: $-18x^{-3} + 2"B"x$ with a numerical B and no extra terms. (A may have been	M1 A1ft
		incorrect or even zero)	
	. v ³	M1: $x^n \to x^{n+1}$ on separate terms at least once. (Differentiating is M0)	M1A1ft
(c)	$f(x) = -9x^{-1} - 6x + \frac{x^3}{3}(+c)$	A1ft: $-9x^{-1} + Ax + \frac{Bx^3}{3}(+c)$ with numerical A and B, $A, B \neq 0$	
	$10 = \frac{-9}{-3} - 6(-3) + \frac{(-3)^3}{3} + c \text{ so } c$ $= \dots$	Uses $x = -3$ and $y = 10$ in what they think is $f(x)$ (They may have differentiated here) but it must be a changed function i.e. not the original $f'(x)$, to form a linear equation in c and attempts to find c . No c gets M0 and A0 unless their method implies that they are correctly finding a constant.	M1
	c = -2	cso	A1
	$(f(x) =) -9x^{-1} - 6x + \frac{x^3}{3} + \text{their}$	Follow through their c in an otherwise (possibly un-simplified) correct expression. Allow $-\frac{9}{x}$ for $-9x^{-1}$ or even $\frac{9x^{-1}}{-1}$.	A1ft
		, no marks there but if they then go on to	
	use their integration in (c), th	e marks for integration are available.	- OA
			[1
			1,

Question Number	Scheme	Notes	Marks
	$\int 3x^2 - \frac{4}{x^2} dx = 3\frac{x^3}{3} - 4\frac{x^{-1}}{-1}$	M1: $x^n \to x^{n+1}$ for either term. If they write $\frac{4}{x^2}$ as $4x^2$ allow $x^2 \to x^3$ here. A1: $3\frac{x^3}{3}$ or $-4\frac{x^{-1}}{-1}$ (one correct term which may be un-simplified) A1: $3\frac{x^3}{3}$ and $-4\frac{x^{-1}}{-1}$ (both terms correct which may be un-simplified)	M1,A1,A1
	Note that M	1A0A1 is not possible	
	$= x^3 + \frac{4}{x} + c$ or $x^3 + 4x^{-1} + c$	Fully correct simplified answer with + c all appearing on the same line.	A1
		<u> </u>	[

Question Number	Scheme	Notes	Marks
(a)	$f'(x) = \frac{x+9}{\sqrt{x}} = \frac{x}{\sqrt{x}} + \frac{9}{\sqrt{x}} = x^{\frac{1}{2}} + 9x^{-\frac{1}{2}}$	M1: Correct attempt to split into 2 separate terms or fractions. May be implied by one correct term. Divides by $x^{\frac{1}{2}}$ or multiplies by $x^{\frac{1}{2}}$. A1: $x^{\frac{1}{2}} + 9x^{\frac{1}{2}}$ or equivalent	M1A1
	$f(x) = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 9\frac{x^{\frac{1}{2}}}{\frac{1}{2}}(+c)$	M1: Independent method mark for x ⁿ → x ⁿ⁺¹ on separate terms A1: Allow un-simplified answers. No requirement for + c here	M1A1
	$\frac{(9)^{\frac{3}{2}}}{\frac{3}{2}} + 9\frac{(9)^{\frac{1}{2}}}{\frac{1}{2}} + c = 0 \Rightarrow c = \dots$ $f(x) = \frac{2}{3}x^{\frac{3}{2}} + 18x^{\frac{1}{2}} - 72$	Substitutes $x = 9$ and $y = 0$ into their integrated expression leading to a value for c . If no c at this stage M0A0 follows unless their method implies that they are correctly finding a constant of integration.	M1
	$f(x) = \frac{2}{3}x^{\frac{3}{2}} + 18x^{\frac{1}{2}} - 72$	There is no requirement to simplify their $f(x)$ so accept any correct un-simplified form.	A1
			(6
(b)	$f'(x) = \frac{x+9}{\sqrt{x}} = 10 \implies x+9 = 10\sqrt{x}$	Sets f'(x) = $\frac{x+9}{\sqrt{x}}$ = 10 and multiplies by \sqrt{x} . The terms in x must be in the numerator. E.g. allow $\frac{x+9}{10} = \sqrt{x}$	M1
	They must be setting either the original expression	- 1 2 30 A	
	$(\sqrt{x} - 9)(\sqrt{x} - 1) = 0 \Rightarrow \sqrt{x} = \dots$	Correct attempt to solve a relevant 3TQ in \sqrt{x} leading to solution for \sqrt{x} . Dependent on the previous M1.	dM1
	x = 81, x = 1	Note that the x = 1 solution could be just written down and is B1but must come from a <u>correct</u> equation.	A1, B1
			(4
			[10
Alternative to part (b)	$(\frac{x+9}{\sqrt{x}})^2 = 10^2 \Rightarrow x^2 + 18x + 81 = 100x$	Sets $\frac{x+9}{\sqrt{x}} = 10$, squares and multiplies by x. They must be setting either the original f'(x) = 10 or an equivalent correct expression = 10	M1
	$(x-81)(x-1) = 0 \Rightarrow x =$	Correct attempt to solve a relevant 3TQ leading to solution for x. Dependent on the previous M1.	dM1
	x = 81, x = 1	Note that the x = 1 solution could be just written down and is B1but must come from a correct equation.	A1, B1

M1, A1
A1
(3 marks)
•

Notes

M1
$$x^n \rightarrow x^{n+1}$$
 so $x^3 \rightarrow x^4$ or $4 \rightarrow 4x$ or $4x^1$

A1 This is for either term with coefficient unsimplified (power must be simplified)—so $\frac{8}{4}x^4$ or 4x (accept $4x^1$)

A1 Fully correct simplified solution with c i.e. $2x^4 + 4x + c$ [allow $2x^4 + 4x + cx^0$]

If the answer is given as $\int 2x^4 + 4x + c$, with an integral sign – having never been seen as the fully correct simplified answer without an integral sign – then give M1A1A0 but allow anything before the = sign e.g. $y = 2x^4 + 4x + c$, $f(x) = 2x^4 + 4x + c$, $f(x) = 2x^4 + 4x + c$, etc....

If this answer is followed by (for example) $x^4 + 2x + k$ then treat this as isw (ignore subsequent work) If they follow it by finding a value for c, also isw, provided correct answer with c has been seen and credited

Question Number	Scheme		Marks
	(a) $f(x) = \int \left(\frac{3}{8}x^2 - 10x^{\frac{1}{2}} + 1\right) dx$		
	$x^n \to x^{n+1} \Rightarrow f(x) = \frac{3}{8} \times \frac{x^3}{3} - 10 \frac{x^{\frac{1}{2}}}{1} + x(+c)$		M1, A1, A1
	Substitute $x = 4$, $y = 25 \Rightarrow 25 = 8 - 40 + 4 + c \Rightarrow c =$		M1
	$(f(x)) = \frac{x^3}{8} - 20x^{\frac{1}{2}} + x + 53$		A1
	(b) Sub $x=4$ into $f'(x) = \frac{3}{8}x^2 - 10x^{\frac{1}{2}} + 1$ $\Rightarrow f'(4) = \frac{3}{8} \times 4^2 - 10 \times 4^{\frac{1}{2}} + 1$		M1
	$\Rightarrow f'(4) = 2$ Gradient of tangent = 2 \Rightarrow Gradient of normal is -1/2		A1 dM1
	Substitute $x = 4$, $y = 25$ into line equation with their changed gradient e.g. $y - 25 = -\frac{1}{2}(x - 4)$	L	dM1
	$\pm k(2y+x-54) = 0$ o.e. (but must have integer coefficients)		Alcso (5)

Notes

- (a) M1 Attempt to integrate $x^n \to x^{n+1}$
 - A1 Term in x^3 or term in $x^{\frac{1}{2}}$ correct, coefficient need not be simplified, no need for +x nor +c
 - Al ALL three terms correct, coefficients need not be simplified, no need for +c
 - M1 For using x = 4, y = 25 in their f(x) to form a linear equation in c and attempt to find c
 - A1 = $\frac{x^3}{8} 20x^{\frac{1}{2}} + x + 53$ cao (all coefficients and powers must be simplified to give this answer- do not need a left hand side and if there is one it may be f(x) or y). Need full expression with 53 These marks need to be scored in part (a)
- (b) M1 Attempt to substitute x = 4 into f'(x) must be in part (b)
 - A1 f'(x) = 2 at x = 4
 - dM1 (Dependent on first method mark in part (b)) Using m₁×m₂ = -1 to find the gradient of the normal from their tangent gradient (Give mark if gradient of 1 becomes -1 as they will lose accuracy)
 - dM1 (Dependent on first method mark in part (b)) Attempt to find the equation of the normal (not tangent). Eg use x=4, y=25 in $y=\frac{-1}{2}x+c$ to find a value of c or use $\frac{1}{2}=\frac{y-25}{x-4}$ with their adapted gradient.
 - A1 cso $\pm k(2y + x 54) = 0$ (where k is any integer)

Question Number	Scheme	Marks
(a)	$y = 2x^5 + \frac{6}{\sqrt{x}}$	$x^n \to x^{n-1}$ M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 10x^4 - 3x^{-\frac{3}{2}}$ oe	A1A1 (3)
(b)	$\int 2x^5 + \frac{6}{\sqrt{x}} dx$	$x^n \to x^{n+1}$ M1
	$=\frac{x^6}{3} + 12x^{\frac{1}{2}} + c$	A1 A1 (3) (6 marks)

(a) M1 For
$$x^n \to x^{n-1}$$
 i.e. x^4 or $x^{-\frac{3}{2}}$ or $\left(\frac{1}{\frac{3}{x^2}}\right)$ seen

A1 For
$$2 \times 5x^4$$
 or $6 \times -\frac{1}{2}x^{-\frac{3}{2}}$ (oe). (Ignore $+c$ for this mark)

A1 For simplified expression
$$10x^4 - 3x^{-\frac{3}{2}}$$
 or $10x^4 - \frac{3}{x^{\frac{3}{2}}}$ o.e. and no +c

Apply ISW here and award marks when first seen.

(b) M1 For
$$x^n \to x^{n+1}$$
 i.e. x^6 or $x^{\frac{1}{2}}$ or (\sqrt{x}) seen

Do not award for integrating their answer to part (a)

A1 For either
$$2\frac{x^6}{6}$$
 or $6 \times \frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or simplified or unsimplified equivalents

A1 For fully correct and simplified answer with +c.

Question Number	Scheme	Marks
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^{-\frac{1}{2}} + x\sqrt{x}$	
	$x\sqrt{x} = x^{\frac{3}{2}}$ $x^n \to x^{n+1}$	B1
	$x^n \to x^{n+1}$	M1
	$y = \frac{6}{\frac{1}{2}}x^{\frac{1}{2}} + \frac{x^{\frac{5}{2}}}{\frac{5}{2}}(+c)$	A1, A1
	Use $x = 4$, $y = 37$ to give equation in c , $37 = 12\sqrt{4} + \frac{2}{5}(\sqrt{4})^5 + c$	M1
	$\Rightarrow c = \frac{1}{5} \text{or equivalent eg.} 0.2$	A1
	$(y) = 12x^{\frac{1}{2}} + \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{5}$	A1
		(7 mark

B1
$$x\sqrt{x} = x^{\frac{3}{2}}$$
. This may be implied by $+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$ oe in the subsequent work.

M1
$$x^n \to x^{n+1}$$
 in at least one case so see either $x^{\frac{1}{2}}$ or $x^{\frac{5}{2}}$ or both

A1 One term integrated correctly. It does not have to be simplified Eg.
$$\frac{6}{\frac{1}{2}}x^{\frac{1}{2}}$$
 or $+\frac{x^{\frac{5}{2}}}{\frac{5}{2}}$.

No need for +c

Other term integrated correctly. See above. No need to simplify nor for
$$+c$$
. Need to see $\frac{6}{\frac{1}{2}}x^{\frac{1}{2}} + \frac{x^{\frac{5}{2}}}{\frac{5}{2}}$ or a simplified correct version

M1 Substitute
$$x = 4$$
, $y = 37$ to produce an equation in c .

A1 Correctly calculates
$$c = \frac{1}{5}$$
 or equivalent e.g. 0.2

A1 cso
$$y = 12x^{\frac{1}{2}} + \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{5}$$
. Allow $5y = 60x^{\frac{1}{2}} + 2x^{\frac{5}{2}} + 1$ and accept fully simplified equivalents.
e.g. $y = \frac{1}{5}(60x^{\frac{1}{2}} + 2x^{\frac{5}{2}} + 1)$, $y = 12\sqrt{x} + \frac{2}{5}\sqrt{x^5} + \frac{1}{5}$

Question Number	Scheme	
	$y = 4x^3 - \frac{5}{x^2}$ $M1: x^n \to x^{n-1}$	
(a)	e.g. Sight of x^2 or x^{-3} or $\frac{1}{x^3}$ $A1: 3 \times 4x^2 \text{ or } -5 \times -2x^{-3} \text{ (oe)}$ (Ignore + c for this mark) $A1: 12x^2 + \frac{10}{x^3} \text{ or } 12x^2 + 10x^{-3} \text{ all on one line a}$ + c	M1A1A1
	Apply ISW here and award marks when first seen.	
(b)	M1: $x^n \to x^{n+1}$. e.g. Sight of x^4 or x^{-1} or $\frac{1}{x^1}$ Do not award for integrating their answer to (a) A1: $4\frac{x^4}{4}$ or $-5 \times \frac{x^{-1}}{-1}$ A1: For fully correct and simplified answer with all on one line. Allow $x^4 + 5 \times \frac{1}{x} + c$ Allow $1x^4$ for x^4	M1A1A1
	Apply ISW here and award marks when first seen. Ignore spurious in signs for all marks.	tegral
		(3
		(6 marks

Question Number	Scheme		Marks
(a)	$f(x) = x^{\frac{3}{2}} - \frac{9}{2}x^{\frac{1}{2}} + 2x(+c)$	M1: x ⁿ → x ⁿ⁺¹ A1: Two terms in x correct, simplification is not required in coefficients or powers A1: All terms in x correct. Simplification not required in coefficients or powers and + c is not required	M1A1A1
	Sub $x = 4$, $y = 9$ into $f(x) \Rightarrow c = 3$	M1: Sub $x = 4$, $y = 9$ into $f(x)$ to obtain a value for c . If no $+c$ then M0. Use of $x = 9$, $y = 4$ is M0.	M1
	$(\mathbf{f}(x) =) x^{\frac{3}{2}} - \frac{9}{2} x^{\frac{1}{2}} + 2x + 2$ si	Accept equivalents but must be implified e.g. $f(x) = x^{\frac{3}{2}} - 4.5\sqrt{x} + 2x + 2$ Must be all 'on one line' and simplified. Allow $x\sqrt{x}$ for $x^{\frac{1}{2}}$	A1
			(5)

(b)	Gradient of normal is $-\frac{1}{2} \Rightarrow$ Gradient of tangent = +2	2y+:	Gradient of $x = 0$ is $\pm \frac{1}{2}(m) \Rightarrow \frac{dy}{dx} = -\frac{1}{\pm \frac{1}{2}}$ Gradient of tangent = +2 (May be ed)	M1A1
	The A1 may be	e implie	ed by $\frac{-1}{\frac{3\sqrt{x}}{2} \frac{9}{4\sqrt{x}} + 2} = -\frac{1}{2}$	
	$\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2 = 2 \Rightarrow \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}}$	$\frac{\partial}{\sqrt{x}} = 0$	Sets the given $f'(x)$ or their $f'(x)$ = their changed m and not their m where m has come from $2y + x = 0$	M1
	$\times 4\sqrt{x} \Rightarrow 6x - 9 = 0 \Rightarrow x = \dots$	yalue	x or equivalent correct algebraic essing (allow sign/arithmetic errors and attempt to solve to obtain a e for x . If $f'(x) \neq 2$ they need to be ing a three term quadratic in \sqrt{x} ectly and square to obtain a value for fust be using the given $f'(x)$ for this	M1
	x=1	17.1	ept equivalents e.g. $x = \frac{9}{6}$ values are not rejected, score A0.	A1
	2 4 4 x	•	$\sqrt{\frac{x}{2}} - \frac{1}{2} = -\frac{1}{2}$ etc. leads to the correct M1M0(incorrect processing)A0	(
				(10 mark

Question Number	Scheme	Notes	Marks
		$\int (2x^4 - \frac{4}{\sqrt{x}} + 3) dx$	
		M1: $x^n \to x^{n+1}$. One power increased by 1 but not for just + c. This could be for $3 \to 3x$ or for $x^n \to x^{n+1}$ on what they think $\frac{1}{\sqrt{x}}$ is as a power of x.	8
	$\frac{2}{5}x^5 - \frac{4}{\frac{1}{2}}x^{\frac{1}{2}} + 3x$	A1: One of these 3 terms correct. Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$, $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$, $3x^1$	M1A1A1
		A1: Two of these 3 terms correct. Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$, $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$, $3x^1$	
	$= \frac{2}{5}x^5 - 8x^{\frac{1}{2}} + 3x + c$	Complete fully correct simplified expression appearing all on one line with constant. Allow 0.4 for $\frac{2}{5}$. Do not allow $3x^1$ for $3x$ Allow \sqrt{x} or $x^{0.5}$ for $x^{\frac{1}{5}}$	A1
	Ignore any spurious in	ntegral signs and ignore subsequent working following a fully correct answer.	
			[4
			4 marks

Question Number	Scheme	Notes	Marks
	$y = 3x^2 + 6x$	$\frac{1}{x^3} + \frac{2x^3 - 7}{3\sqrt{x}}$	
	$\frac{2x^3 - 7}{3\sqrt{x}} = \frac{2x^3}{3\sqrt{x}} - \frac{7}{3\sqrt{x}} = \frac{2}{3}x^{\frac{5}{2}} - \frac{7}{3}x^{-\frac{1}{2}}$	Attempts to split the fraction into 2 terms and obtains either $\alpha x^{\frac{1}{2}}$ or $\beta x^{-\frac{1}{2}}$. This may be implied by a correct power of x in their differentiation of one of these terms. But beware of $\beta x^{-\frac{1}{2}}$ coming from $\frac{2x^3-7}{3\sqrt{x}}=2x^3-7+3x^{-\frac{1}{2}}$	M1
	$x^n \to x^{n-1}$	Differentiates by reducing power by one for any of their powers of x	M1
		A1: 6x: Do not accept 6x ¹ . Depends on second M mark only. Award when first seen and isw.	
	(A) 5 7	A1: $2x^{-\frac{4}{3}}$. Must be simplified so do not accept e.g. $\frac{2}{1}x^{-\frac{2}{3}}$ but allow $\frac{2}{\sqrt[3]{x^2}}$. Depends on second M mark only. Award when first seen and isw.	à
	$\left(\frac{dy}{dx}\right) = 6x + 2x^{-\frac{2}{3}} + \frac{5}{3}x^{\frac{3}{2}} + \frac{7}{6}x^{-\frac{3}{2}}$	A1: $\frac{5}{3}x^{\frac{3}{2}}$. Must be simplified but allow e.g. $1\frac{2}{3}x^{\frac{1}{5}}$ or e.g. $\frac{5}{3}\sqrt{x^3}$. Award when first seen and isw.	A1A1A1A1
		A1: $\frac{7}{6}x^{-\frac{3}{2}}$. Must be simplified but allow e.g. $1\frac{1}{6}x^{-\frac{1}{2}}$ or e.g. $\frac{7}{6\sqrt{x^3}}$. Award when first seen and isw.	
22 3	In an otherwise <u>fully correct solution</u> , penali		: 8
2	A	1	[6]
	Use of Quotient Rule: First M1 and	final A1A1 (Other marks as above)	
	$\frac{d\left(\frac{2x^3 - 7}{3\sqrt{x}}\right)}{dx} = \frac{3\sqrt{x}\left(6x^2\right) - \left(2x^3 - 7\right)\frac{3}{2}x^{-\frac{1}{2}}}{\left(3\sqrt{x}\right)^2}$	Uses correct quotient rule	M1
	$=\frac{10x^{\frac{5}{2}}+7x^{-\frac{1}{2}}}{6x}$	A1: Correct first term of numerator and correct denominator A1: All correct as simplified as shown	A1A1
	So $\frac{dy}{dx} = 6x + 2x^{-\frac{2}{3}} + \frac{10x}{3}$		
	Taken's		6 marks

Question Number	Scheme $\int \left(2x^5 - \frac{1}{4}x^{-3} - 5\right) dx$ Ignore any spurious integral signs throughout		Marks
	$x^n \to x^{n+1}$ E. or to	aises any of their powers by 1. g. $x^5 o x^6$ or $x^{-3} o x^{-2}$ or $k o kx$ $x^{\text{their}n} o x^{\text{their}n+1}$. Allow the powers be un-simplified e.g. $x^5 o x^{5+1}$ or $x^{-3} o x^{-3+1}$ or $x^{-3} o x^{-3+1}$.	М1
	7 × — or — × —	ny one of the first two terms orrect simplified or un-simplified.	A1
	Two of: $\frac{1}{3}x^6$, $\frac{1}{8}x^{-2}$, $-5x$ fo	ny two correct <u>simplified</u> terms. $ccept + \frac{1}{8x^2} for + \frac{1}{8}x^{-2}$ but not x^1 or x . Accept 0.125 for $\frac{1}{8}$ but $\frac{1}{3}$ ould clearly need to be identified a 0.3 recurring.	A1
	$\frac{1}{3}x^6 + \frac{1}{8}x^{-2} - 5x + c$ in A	Il correct and simplified and cluding $+c$ all on one line. ccept $+\frac{1}{8x^2}$ for $+\frac{1}{8}x^{-2}$ but not x^1 or x . Apply isw here.	A1
			(4 marks)

Question Number	Scheme		Marks
(a)	$f'(4) = 30 + \frac{6 - 5 \times 4^2}{\sqrt{4}}$	Attempts to substitutes $x = 4$ into $f'(x) = 30 + \frac{6 - 5x^2}{\sqrt{x}}$ or their algebraically manipulated $f'(x)$	M1
	f'(4) = -7	Gradient = -7	A1
	$y-(-8) = "-7" \times (x-4)$ or $y = "-7" x + c \Rightarrow -8 = "-7" \times 4 + c$ $\Rightarrow c = \dots$	Attempts an equation of a tangent using their numeric $f'(4)$ which has come from substituting $x = 4$ into the given $f'(x)$ or their algebraically manipulated $f'(x)$ and $(4,-8)$ with the 4 and -8 correctly placed. If using $y = mx + c$, must reach as far as $c =$	M1
	y = -7x + 20	Cao. Allow $y = 20 - 7x$ and allow the "y =" to become "detached" but it must be present at some stage. E.g. $y =$ = -7x + 20	A1
			(4)

b)	Allow the marks in (b) to score i	n (a) i.e. mark (a) and (b) together	
(b)	$\Rightarrow f(x) = 30x + 6\frac{x^{\frac{1}{2}}}{0.5} - 5\frac{x^{\frac{5}{2}}}{2.5}(+c)$	M1: $30 \rightarrow 30x$ or $\frac{6}{\sqrt{x}} \rightarrow \alpha x^{\frac{1}{2}}$ or $-\frac{5x^2}{\sqrt{x}} \rightarrow \beta x^{\frac{5}{2}}$ (these cases only) A1: Any 2 correct terms which can be simplified or un-simplified. This includes the powers – so allow $-\frac{1}{2} + 1$ for $\frac{1}{2}$ and allow $\frac{3}{2} + 1$ for $\frac{5}{2}$ (With or without + c) A1: All 3 terms correct which can be simplified or un-simplified. (With or without + c)	M1A1A1
	Ignore any spurious integral signs		
	$x = 4, \mathbf{f}(x) = -8 \Rightarrow$ -8 = 120 + 24 - 64 + $c \Rightarrow c =$	Substitutes $x = 4$, $f(x) = -8$ into their $f(x)$ (not $f'(x)$) i.e. a changed f'(x) containing $+c$ and rearranges to obtain a value or numerical expression for c .	M1
	$\Rightarrow (\mathbf{f}(x) =)30x + 12x^{\frac{1}{2}} - 2x^{\frac{5}{2}} - 88$	Cao and cso (Allow \sqrt{x} for $x^{\frac{1}{2}}$ and e.g. $\sqrt{x^3}$ or $x^2\sqrt{x}$ for $x^{\frac{5}{2}}$). Isw here so as soon as you see the correct answer, award this mark. Note that the "f(x) =" is not needed.	A1
		100	(
			(9 mark