Integration 2 - Edexcel Past Exam Questions

1. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(2,10)$. Given that

$$
f^{\prime}(x)=3 x^{2}-3 x+5,
$$

find the value of $f(1)$.
2. Find

$$
\begin{equation*}
\int\left(6 x^{2}+\frac{2}{x^{2}}+5\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

giving each term in its simplest form.
3. The point $P(4,-1)$ lies on the curve C with equation $y=\mathrm{f}(x), x>0$, and

$$
\mathrm{f}^{\prime}(x)=\frac{1}{2} x-\frac{6}{\sqrt{x}}+3 .
$$

(a) Find the equation of the tangent to C at the point P, giving your answer in the form $y=m x+c$, where m and c are integers.
(b) Find $\mathrm{f}(x)$.

June 12 Q7
4.

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=-x^{3}+\frac{4 x-5}{2 x^{3}}, \quad x \neq 0 \tag{6}
\end{equation*}
$$

Given that $y=7$ at $x=1$, find y in terms of x, giving each term in its simplest form.
Jan 13 Q8
5. Find

$$
\begin{equation*}
\int\left(10 x^{4}-4 x-\frac{3}{\sqrt{ } x}\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

giving each term in its simplest form.
6.

$$
\begin{equation*}
\mathrm{f}^{\prime}(x)=\frac{\left(3-x^{2}\right)^{2}}{x^{2}}, \quad x \neq 0 \tag{3}
\end{equation*}
$$

(a) Show that $\mathrm{f}^{\prime}(x)=9 x^{-2}+A+B x^{2}$, where A and B are constants to be found.
(b) Find $\mathrm{f}^{\prime \prime}(x)$.

Given that the point $(-3,10)$ lies on the curve with equation $y=\mathrm{f}(x)$,
(c) find $\mathrm{f}(x)$.
7. Find

$$
\int\left(3 x^{2}-\frac{4}{x^{2}}\right) \mathrm{d} x
$$

giving each term in its simplest form.
8. A curve has equation $y=\mathrm{f}(x)$. The point P with coordinates $(9,0)$ lies on the curve. Given that

$$
\mathrm{f}^{\prime}(x)=\frac{x+9}{\sqrt{ } x}, \quad x>0
$$

(a) find $\mathrm{f}(x)$.
(b) Find the x-coordinates of the two points on $y=\mathrm{f}(x)$ where the gradient of the curve is equal to 10 .
(4)

June 13(R) Q10
9. Find $\int\left(8 x^{3}+4\right) \mathrm{d} x$, giving each term in its simplest form.
10. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(4,25)$.

Given that $\mathrm{f}^{\prime}(x)=\frac{3}{8} x^{2}-10 x^{-\frac{1}{2}}+1, \quad x>0$,
(a) find $\mathrm{f}(x)$, simplifying each term.
(b) Find an equation of the normal to the curve at the point $(4,25)$. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers to be found.
11. Given that $y=2 x^{5}+\frac{6}{\sqrt{ }}, x>0$, find in their simplest form
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(3)
(b) $\int y \mathrm{~d} x$
(3)

June 14(R) Q4
12.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{-\frac{1}{2}}+x \sqrt{ } x, \quad x>0
$$

Given that $y=37$ at $x=4$, find y in terms of x, giving each term in its simplest form.
June 14(R) Q8
13. Given that $y=4 x^{3}-\frac{5}{x^{2}}, x \neq 0$, find in their simplest form
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(b) $\int y \mathrm{~d} x$.

June 15 Q3
14. A curve with equation $y=\mathrm{f}(x)$ passes through the point $(4,9)$.

Given that

$$
\mathrm{f}^{\prime}(x)=\frac{3 \sqrt{ } x}{2}-\frac{9}{4 \sqrt{ } x}+2, \quad x>0
$$

(a) find $\mathrm{f}(x)$, giving each term in its simplest form.

Point P lies on the curve.
The normal to the curve at P is parallel to the line $2 y+x=0$.
(b) Find the x-coordinate of P.

June 15 Q10
15. Find

$$
\int\left(2 x^{4}-\frac{4}{\sqrt{x}}+3\right) \mathrm{d} x
$$

giving each term in its simplest form.
(4)

June 16 Q1
16. Given that

$$
y=3 x^{2}+6 x^{\frac{1}{3}}+\frac{2 x^{3}-7}{3 \sqrt{x}}, \quad x>0
$$

find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Give each term in your answer in its simplified form.
17. Find

$$
\int\left(2 x^{5}-\frac{1}{4 x^{3}}-5\right) \mathrm{d} x
$$

giving each term in its simplest form.
18. The curve C has equation $y=\mathrm{f}(x), x>0$, where

$$
\mathrm{f}^{\prime}(x)=30+\frac{6-5 x^{2}}{\sqrt{x}}
$$

Given that the point $P(4,-8)$ lies on C,
(a) find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.
(b) Find $\mathrm{f}(x)$, giving each term in its simplest form.

