## Question 1



Question 2

| (a) | Puts $10-x=10 x-x^{2}-8$ and rearranges to give three term quadratic | Or puts $y=10(10-y)-(10-y)^{2}-8$ <br> and rearranges to give three term quadratic | M1 |
| :---: | :---: | :---: | :---: |
|  | Solves their " $x^{2}-11 x+18=0$ " using acceptable method as in general principles to give $x=$ | Solves their " $y^{2}-9 y+8=0$ " using acceptable method as in general principles to give $y=$ | M1 |
|  | Obtains $x=2, x=9$ (may be on diagram or in part (b) in limits) | Obtains $y=8, y=1$ (may be on diagram) | A1 |
|  | Substitutes their $x$ into a given equation to give $y=$ (may be on diagram) | Substitutes their $y$ into a given equation to give $x=$ (may be on diagram or in part (b)) | M1 |
|  | $y=8, y=1$ | $x=2, x=9$ | A1 (5) |
| (b) | $\int\left(10 x-x^{2}-8\right) \mathrm{d} x=\frac{10 x^{2}}{2}-\frac{x^{3}}{3}-8 x\{+c\}$ |  | M1 A1 A1 |
|  | $\left[\frac{10 x^{2}}{2}-\frac{x^{3}}{3}-8 x\right]_{2}^{9}=(\ldots \ldots)-(\ldots \ldots)$ |  | dM1 |
|  | $=90-\frac{4}{3}=88 \frac{2}{3} \text { or } \frac{266}{3}$ |  |  |
|  | Area of trapezium $=\frac{1}{2}(8+1)(9-2)=31.5$ |  | B1 |
|  | So area of $R$ is $88 \frac{2}{3}-31.5=57 \frac{1}{6}$ or $\frac{343}{6}$ |  | M1A1 |
|  |  |  | (7) |
|  |  |  | 12 marks |

Question 3


Question 4


Question 5

| Question | Scheme | Marks |
| :---: | :---: | :---: |
|  | M1: $x^{n} \rightarrow x^{n+1}$ | M1A1A1 |
|  | A1: At least one of either $\frac{x^{4}}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$ |  |
|  | $\left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{dx}\right\}=\frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)} \quad \begin{array}{ll} \text { A1: } \frac{x^{4}}{6(4)}+\frac{x^{-1}}{(3)(-1)} \text { or equivalent. } \\ \text { e.g. } \frac{x^{4}}{6}+\frac{x^{-1}}{3} \\ \text { if they cannot deal with this correctly) } \end{array}$ |  |
|  | Note that some candidates may change the function prior to integrating e.g. $\int \frac{x^{3}}{6}+\frac{1}{3 x^{2}} \mathrm{~d} x=\int 3 x^{5}+6 \mathrm{~d} x$ in which case allow the MI if $x^{n} \rightarrow x^{n+1}$ for their changed function and allow the $\mathbf{M l}$ for limits if scored |  |
|  | $\left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{dx}\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(\sqrt{3})^{-1}}{-1(3)}\right)-\left(\frac{(1)^{4}}{24}+\frac{(1)^{-1}}{-1(3)}\right)$ | dM1 |
|  | $2^{\text {na }} \mathrm{dM}$ : For using limits of $\sqrt{3}$ and 1 on an integrated expression and subtracting the correct way round. The $2^{\text {nd }} \mathrm{Ml}$ is dependent on the $\mathrm{l}^{\mathrm{l}^{t}} \mathrm{Ml}$ being awarded. |  |
|  | $=\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{1}{9} \sqrt{3} \left\lvert\, \begin{aligned} & \frac{2}{3}-\frac{1}{9} \sqrt{3} \text { or } a=\frac{2}{3} \text { and } b=-\frac{1}{9} . \\ & \text { Allow equivalent fractions for } a \text { and/or } b \text { and } \\ & 0.6 \text { recurring and/or } 0.1 \text { recurring but do not } \\ & \text { allow } \frac{6-\sqrt{3}}{9} \end{aligned}\right.$ | Alcso |
|  | This final mark is cao and cso - there must have been no previous errors |  |
|  |  | Total 5 |
|  | Common Errors (Usually 3 out of 5) |  |
|  | $\begin{gathered} \left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{dx}\right\}-\int\left(\frac{x^{3}}{6}+3 x^{-2}\right) \mathrm{dx}=\frac{x^{4}}{6(4)}+\frac{3 x^{-1}}{(-1)} \text { M1A1A0 } \\ \left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{dx}\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{3(\sqrt{3})^{-1}}{-1}\right)-\left(\frac{(1)^{4}}{24}+\frac{3(1)^{-1}}{-1}\right) \mathrm{dM} 1 \\ =\left(\frac{9}{24}-\frac{3}{\sqrt{3}}\right)-\left(\frac{1}{24}+\frac{3}{-1}\right)=\frac{10}{3}-\sqrt{3} \text { A0 } \end{gathered}$ |  |
|  | $\begin{gathered} \left\{\int\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\int\left(\frac{x^{3}}{6}+(3 x)^{-2}\right) \mathrm{d} x=\frac{x^{4}}{6(4)}+\frac{(3 x)^{-1}}{(-1)} \text { M1A1A0 } \\ \left\{\int_{1}^{\sqrt{3}}\left(\frac{x^{3}}{6}+\frac{1}{3 x^{2}}\right) \mathrm{d} x\right\}=\left(\frac{(\sqrt{3})^{4}}{24}+\frac{(3 \sqrt{3})^{-1}}{-1}\right)-\left(\frac{(1)^{4}}{24}+\frac{(3 \times 1)^{-1}}{-1}\right) \mathrm{dM} 1 \\ =\left(\frac{9}{24}-\frac{1}{3 \sqrt{3}}\right)-\left(\frac{1}{24}-\frac{1}{3}\right)=\frac{2}{3}-\frac{\sqrt{3}}{9} \mathrm{~A} 0 \end{gathered}$ <br> Note this is the correct answer but follows incorrect work. |  |

Question 6

| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
|  | $\int\left(\frac{1}{8} x^{3}+\frac{3}{4} x^{2}\right) \mathrm{d} x=\frac{x^{4}}{32}+\frac{x^{3}}{4}\{+c\}$ | M1: $x^{n} \rightarrow x^{n+1}$ on either term | M1A1 |
|  |  | A1: $\frac{x^{4}}{32}+\frac{x^{3}}{4}$. Any correct simplified or un-simplified form. (+ c not required) |  |
|  | $\begin{gathered} {\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{-4}^{2}=\left(\frac{16}{32}+\frac{8}{4}\right)-\left(\frac{256}{32}+\frac{(-64)}{4}\right)} \\ {\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{-4}^{0}=(0)-\left(\frac{(-4)^{4}}{32}+\frac{(-4)^{3}}{4}\right) \text { added to }\left[\frac{x^{4}}{32}+\frac{x^{3}}{4}\right]_{0}^{2}=\left(\frac{(2)^{4}}{32}+\frac{(2)^{3}}{4}\right)-(0)} \end{gathered}$ |  | dM1 |
|  | Substitutes limits of 2 and -4 into an "integrated function" and subtracts either way round. Or substitutes limits of 0 and -4 and 2 and 0 into an "integrated function" and subtracts either way round and adds the two results. |  |  |
|  | $=\frac{21}{2}$ | $\frac{21}{2}$ or 10.5 | A1 |
|  | $\{$ At $x=-4, y=-8+12=4$ or at $x=2, y=1+3=4\}$ |  |  |
|  | Area of Rectangle $=6 \times 4=24$ or <br> Area of Rectangles $=4 \times 4=16$ and $2 \times 4=8$ |  | M1 |
|  | Evidence of $(4--2) \times$ their $y_{-4}$ or $(4--2) \times$ their $y_{2}$ or Evidence of $4 \times$ their $y_{-4}$ and $2 \times$ their $y_{2}$ |  |  |
|  | So, area $(\mathrm{R})=24-\frac{21}{2}=\frac{27}{2}$ | dddM1: Area rectangle integrated answer. Dependent on all previous method marks and requires: Rectangle $>$ integration $>0$ | dddM1A1 |
|  |  | A1: $\frac{27}{2}$ or 13.5 |  |
|  |  |  | [7] |
|  |  |  | Total 7 |


| Alternative: |  |  |
| :---: | :---: | :---: |
| $\pm$ "their4" $-\left(\frac{1}{8} x^{3}+\frac{3}{4} x^{2}\right) \mathrm{d} x$ | Line - curve. Condone missing brackets and allow either way round. | $4^{\text {th }}$ M1 |
|  | M1: $x^{n} \rightarrow x^{n+1}$ on either curve term | $\begin{aligned} & 1^{1^{\text {th }} \mathrm{M} 1,1^{\text {st }}} \mathrm{A} 1 \mathrm{ft} \end{aligned}$ |
| $=4 x-\frac{x^{4}}{32}-\frac{x^{3}}{4}\{+c\}$ | A1ft: " $-\frac{x^{4}}{32}-\frac{x^{3}}{4}, "$ Any correct simplified or un-simplified form of their curve terms, follow through sign errors. ( +c not required) |  |
| $[]_{-4}^{2}=\left(8-\frac{16}{32}-\frac{8}{4}\right)-\left(-16-\frac{256}{32}-\frac{(-64)}{4}\right)$ | $2^{\text {nd }}$ M1 Substitutes limits of 2 and -4 into an "integrated curve" and subtracts either way round. | $\begin{aligned} & 2^{\text {nd }} \mathrm{M} 1,3^{\text {rd }} \\ & \mathrm{M} 1 \\ & 2^{\text {nd }} \mathrm{A} 1 \end{aligned}$ |
|  | $3^{\text {rd }} \text { M1 for } \pm\left(" 8^{\prime \prime}-"-16^{\prime \prime}\right)$ <br> Substitutes limits into the 'line part' and subtracts either way round. |  |
|  | $2^{\text {nd }} \mathrm{A} 1$ for correct $\pm$ (underlined expression). Now needs to be correct but allow $\pm$ the correct expression. |  |
| $=\frac{27}{2}$ | A1: $\frac{27}{2}$ or 13.5 | $3^{\text {rd }} \mathrm{A} 1$ |
| If the final answer is -13.5 you can withhold the final A1 If -13.5 then "becomes" +13.5 allow the A1 |  |  |

## Question 7

|  |  |  |
| :---: | :---: | :---: |
|  | Integrates to give $\frac{10}{" \frac{5}{2} "} x^{\frac{" \xi^{\prime}}{2}}+\frac{-" 20 " x^{2}}{2}(+c)$ <br> Simplifies to $4 x^{\frac{5}{2}}-10 x^{2}(+c)$ <br> Use limits 0 and 4 either way round on their integrated function (may only see 4 substituted) <br> Use limits 4 and 9 either way round on their integrated function <br> Obtains either $\pm-32$ or $\pm 194$ needs at least one of the previous M marks for this to be awarded | ddM1 A1 |
| Notes <br> (a) B1: Expands the bracket correctly <br> M1: Correct integration process on at least one term after attempt at multiplication. (Follow correct expansion or one slip resulting in $10 x^{k}-20 x$ where $k$ may be $\frac{1}{2}$ or $\frac{5}{2}$ or resulting in $10 x^{\frac{1}{2}}-B x$, where $B$ may be 2 or 5) <br> So $x^{\frac{2}{2}} \rightarrow \frac{x^{\frac{1}{3}}}{5 / 2}$ or $x^{\frac{1}{2}} \rightarrow \frac{x^{\frac{1}{3}}}{3 / 2}$ or $x^{\frac{1}{2}} \rightarrow \frac{x^{\frac{2}{3}}}{7 / 2}$ and/or $x \rightarrow \frac{x^{2}}{2}$. <br> Al: Correct unsimplified follow through for both terms of their integration. Does not need ( $+c$ ) <br> Al: Must be simplified and correct- allow answer in scheme or $4 x^{2 \frac{1}{2}}-10 x^{2}$. Does not need ( $+c$ ) <br> (b) M1: (does not depend on first method mark) Attempt to substitute 4 into their integral (however obtained but must not be differentiated) or seeing their evaluated number (usually 32) is enough - do not need to see minus zero. <br> $\mathrm{dMl}:$ (depends on first method mark in (a)) Attempt to subtract either way round using the limits 4 and 9 $A \times 9^{\frac{5}{2}}-B \times 9^{2}$ with $A \times 4^{\frac{5}{2}}-B \times 4^{2}$ is enough - or seeing $162-(-32)$ \{but not $\left.162-32\right\}$ <br> Al: At least one of the values ( 32 and 194) correct (needs just one of the two previous M marks in (b)) or may see $162+32+32$ or $162+64$ or may be implied by correct final answer if not evaluated until last line of working <br> ddM1: Adds 32 and 194 (may see $162+32+32$ or may be implied by correct final answer if not evaluated until last line of working). This depends on everything being correct to this point. <br> Alcao: Final answer of 226 not $(-226)$ <br> Common errors: $4 \times 4^{\frac{5}{2}}-10 \times 4^{2}+4 \times 9^{\frac{5}{2}}-10 \times 9^{2}-4 \times 4^{\frac{5}{2}}-10 \times 4^{2}= \pm 162$ obtains M1 M1 A0 (neither 32 nor 194 seen and final answer incorrect) then M0 A0 so $2 / 5$ <br> Uses correct limits to obtain $-32+162+32=+/-162$ is M1 M1 A1 ( 32 seen) M0 A0 so $3 / 5$ <br> Special case: In part (b) Uses limits 9 and $0=972-810-0=162$ M0 M1 A0 M0A0 scores $1 / 5$ This also applies if 4 never seen. |  |  |
|  |  |  |

Question 8


## Question 9

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (a) | $\frac{\mathrm{d} y}{\mathrm{~d} x}=12 x^{2}+18 x-30$ | M1 |
|  | Either |  |
|  | Substitute $x=1$ to give $\frac{\mathrm{d} y}{\mathrm{~d} x}=12+18-30=0 \quad$ Solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=12 x^{2}+18 x-30=0$ to give $x$ | A1 |
|  | So turning point (all correct work so far) Deduce x $=1$ from | Alcso (3) |
| (b) <br> Way 1 | When $x=1, y=4+9-30-8=-25$ | B1 |
|  | Area of triangle $A B P=\frac{1}{2} \times 1 \times 25=12.5 \quad$ (Where $P$ is at $\left.(1,0)\right)$ | B1 |
|  | $\begin{aligned} & \text { Way 1: } \int\left(4 x^{3}+9 x^{2}-30 x-8\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}-\frac{30 x^{2}}{2}-8 x\{+c\} \text { or } x^{4}+3 x^{3}-15 x^{2}-8 x\{+c\} \\ & {\left[x^{4}+3 x^{3}-15 x^{2}-8 x\right]_{-\frac{1}{4}}^{1}=(1+3-15-8)-\left(\left(-\frac{1}{4}\right)^{4}+3\left(-\frac{1}{4}\right)^{3}-15\left(-\frac{1}{4}\right)^{2}-8\left(-\frac{1}{4}\right)\right)} \end{aligned}$ | M1A1 |
|  |  | dM1 |
|  | $\begin{aligned} & \qquad(-19)-\frac{261}{256} \text { or }-19-1.02 \\ & \text { So Area }=\text { "their } 12.5 \text { " }+ \text { "their } 20 \frac{5}{256} \text { " or " } 12.5 \text { " }+ \text { " } 20.02 \text { " or " } 12.5 \text { " }+ \text { "their } \frac{5125}{256} \text { " } \\ & =32.52 \text { (NOT }-32.52 \text { ) } \end{aligned}$ | ddM1 |
|  |  | A1 (7) [10] |
|  | Less efficient alternative methods for first two marks in part (b) with Way 1 or 2 For first mark: Finding equation of the line $A B$ as $y=25 x-50$ as this implies the -25 For second mark: Integrating to find triangle area $\int_{1}^{2}(25 x-50) \mathrm{d} x=\left[\frac{25}{2} x^{2}-50 x\right]_{1}^{2}=-50+37.5=-12.5$ <br> so area is 12.5 <br> Then mark as before if they use Method in original scheme | B1 |
|  |  | B1 |

(b) Way 2: Those who use area for original curve between -1/4 and $\mathbf{2}$ and subtract area

Way 2 between line and curve between 1 and 2 have a correct (long) method.
The first B1 (if $\mathrm{y}=-25$ is not seen) is for equation of straight line $y=25 x-50$
The second B1 may be implied by final answer correct, or 4.5 seen for area of "segment shaped" region between line and curve, or by area between line and axis/triangle found as 12.5 $\int\left(4 x^{3}+9 x^{2}-55 x+42\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}-\frac{55 x^{2}}{2}+42 x\{+c\} \quad$ (or integration as in Way 1)
The dM 1 is for correct use of the different correct limits for each of the two areas: i.e.
$\left[x^{4}+3 x^{3}-15 x^{2}-8 x\right]_{-\frac{1}{4}}^{2}=(16+24-60-16)-\left(\left(-\frac{1}{4}\right)^{4}+3\left(-\frac{1}{4}\right)^{3}-15\left(-\frac{1}{4}\right)^{2}-8\left(-\frac{1}{4}\right)\right)$
And $\left[x^{4}+\frac{9}{3} x^{3}-\frac{55 x^{2}}{2}+42 x\right]_{1}^{2}=16+24-110+84-(1+3-27.5+42)$
So Area $=$ their $\left[x^{4}+3 x^{3}-15 x^{2}-8 x\right]_{-\frac{1}{4}}^{2}$ minus their $\left[x^{4}+\frac{9}{3} x^{3}-\frac{55 x^{2}}{2}+42 x\right]_{1}^{2}$
i.e. "their 37.0195 " - "their 4.5 " (with both sets of limits correct for the integral)

Reaching $=32.52 \quad$ (NOT - 32.52 )
See over for special case with wrong limits
NB: Those who attempt curve - line wrongly with limits $-1 / 4$ to 2 may earn M1A1 for correct integration of their cubic. Usually e.g.
$\int\left(4 x^{3}+9 x^{2}-55 x+42\right) \mathrm{d} x=x^{4}+\frac{9}{3} x^{3}-\frac{55 x^{2}}{2}+42 x\{+c\}$
(They will not earn any of the last 3 marks)
They may also get first B1 mark for the correct equation of the straight line (usually seen but may be implied by correct line -curve equation) and second B1 if they also use limits 1 and 2 to obtain 4.5 (or find the triangle area 12.5).


